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Abstract  
The rapid development of 

precision agriculture (PA) 

has transformed farming 

practices by integrating 

digital technologies such 

as GPS-guided machinery, 

variable rate application 

systems, drones, and 

sensor-based monitoring 
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INTRODUCTION  
Agriculture has 

experienced radical 

change since the 

beginning of the last 

century, fueled by 

technological revolution, 

policy transformations, 

and shifting consumer 

tastes. In recent decades, 

the development of 

precision agriculture (PA) 

has been regarded as a 

fundamental change in 

agricultural practices, 

with the potential to boost 

efficiency, decrease costs, 

and increase 

sustainability. Precision 

agriculture refers to the 

convergence of 

technologies like Global 

Positioning Systems 

(GPS), Geographic 

Information Systems 

(GIS), remote sensing, 

drones, artificial 

intelligence (AI), and 

sensor-based monitoring 

systems to maximize field-

level management of 

livestock and crops. These 

technologies allow farmers 

to apply inputs like water, 

fertilizers, and pesticides 

in accurate quantity and 

place, thus avoiding 

wastage and improving  
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tools. This study conducts a 

systematic review of 

literature published 

between 2000 and 2025 to 

evaluate the economic 

implications of PA adoption 

in the United States, with a 

focus on farm profitability 

and resource use efficiency. 

Using the PRISMA 

framework, 47 relevant 

studies were identified 

from peer-reviewed 

journals, USDA reports, 

and grey literature. 

Findings indicate that PA 

adoption generally 

improves profitability 

through cost reductions, 

yield optimization, and 

long-term efficiency gains. 

Profitability increases 

ranged from 5% to 25%, 

with large-scale farms 

realizing the greatest 

returns due to economies of 

scale, while smaller farms 

faced slower returns on 

investment. Evidence also 

demonstrates substantial 

improvements in resource 

use efficiency, including 

fertilizer reductions of 10–

20%, water savings of 15–

30%, and pesticide 

reductions of up to 15%. 

However, adoption barriers 

such as high capital costs, 

knowledge gaps, and 

limited access to financing 

restrict wider 

implementation, 

particularly among small 

and medium-sized farms. 

The review concludes that 

while precision agriculture 

enhances economic and 

environmental outcomes, 

targeted policy support is 

essential to ensure 

equitable access and 

maximize national 

agricultural sustainability 

goals. 

 

verall efficiency in resource usage (Gebbers & Adamchuk, 2010). 

The U.S. agriculture sector is being increasingly challenged with challenges like 

increasing input prices, labor scarcity, weather variability, and growing 

environmental issues (Schimmelpfennig, 2016). Traditional agriculture is based on 

homogenous application of inputs, leading to inefficiency, excessive use of resources, and 

adverse environmental spillovers like soil erosion, water pollution, and greenhouse gas 

emissions. Precision agriculture offers the promise of solving this problem by merging 

farm management decisions with site-specific requirements, thus enabling farmers to 

maximize yield potential and reduce input costs and environmental effects Although 

promising, the economic effects of precision agriculture applications are controversial. On 

the other hand, advocates are claiming that adoption of precision technology can result in 

increased profitability in terms of increased yields, decreased input prices, and long-run 

efficiency returns (Robertson et al., 2012). Critics, on the other hand, refer to a few major 

impediments in the guise of large initial capital outlays, learning curves with technology, 

and small compared to large farm range of adoption (Daberkow & McBride, 2003). These 

barriers also bring into question whether or not the economic benefit is distributed evenly 

among U.S. farms of varying size and location. 

Furthermore, the uptake of precision agriculture intersects with wider policy and 

sustainability objectives. Government schemes and incentives, as the case of the 

conservation programs in the U.S. Farm Bill, have increasingly promoted sustainable 

agriculture that reconciles farm profitability and sound environmental control (USDA, 

2021). It is hence imperative to understand how precision agriculture responds to 

o 
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profitability as well as to resource efficiency in a bid to inform policy institutions, 

investment choices, and extension services aimed at U.S. farmers. 

This research attempts to analyze the economic impact of the implementation of precision 

agriculture in the US, and most importantly, its influence on farm profitability and 

resource-use efficiency. Using the available farm-level data and adoption behavior, the 

research attempts to find out if precision agriculture has quantifiable financial gains, 

improved input-use efficiency, and environmentally friendly agriculture production. In 

doing so, the study will advance the current debate about the future of US agriculture and 

what role digital technologies are going to have in determining it, and illuminate 

challenges and opportunities for additional use. 

 

Research Objectives 

 To assess the effect of embracing precision agriculture on farm profitability as 

gauged by changes in crop output, production costs, and net returns. 

 To determine the extent to which precision agriculture technology increases the 

efficiency in resource use, especially in the use of inputs like water, fertilizers, and 

pesticides. 

 To contrast the economic performance of farms employing precision agriculture with 

those employing conventional farming. 

 To measure the impact of farm size, capital investment, and technology type on the 

economic efficiency of precision agriculture adoption. 

 To determine the enablers and disablers on the adoption decisions of precision 

agriculture technology by farmers, with economic factors. 

 To synthesize evidence from existing literature and case studies to offer policy and 

managerial guidelines towards making precision agriculture viable and sustainable. 

Review of related literature  

 

Economic Implications of Precision Agriculture 

The economic implication of precision agriculture (PA) has been sufficiently documented. 

Griffin et al. (2018) indicated that profitability returns due to PA technologies are 

extremely diverse and contingent upon size of farm, level of technology, and management 

intensity. Long-term empirical analyses by Yost et al. (2019) revealed that PA systems 

continued to remain profitable in the majority of sectors, thus implying that adoption can 

generate steady financial returns when combined with conservation practices. Pedersen 

(2023) also noted that adopters of sophisticated PA technology packages possess higher 

technical efficiency than non-adopters, signifying the importance of integrated 

approaches to economic benefits. 

 

Resource-Use Efficiency and Environmental Sustainability 

A body of literatures have documented the sustainability impacts of PA. Onyango et al. 

(2021) have undertaken a systematic review and established that plant and soil sensors, 

GIS, and simulation models significantly enhanced nutrient and water management in 
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smallholder systems. Liakos et al. (2018) have also established that sensor-based 

irrigation is able to save up to 25% of water without affecting yield performance. Later, 

Popović et al. (2024) established that PA practice adoption saves about 15% in fertilizer 

and 20% in crop protection, demonstrating environmental as well as economic savings. 

 

Barriers to Adoption 

Adoption continues to be hindered by various barriers despite this. Mitchell et al. (2021) 

found technology cost and absence of demonstrated value to be major disincentives to 

adoption in Canadian agriculture production systems. Hundal et al. (2023) built upon 

these results through a questionnaire of Internet of Things (IoT) enabled PA practice and 

sketching issues with power demands, wireless communication, and scalability. These 

outcomes indicate that technical as well as financial factors influence the adoption path 

of PA for regions and manufacturing systems. 

In spite of evidence verifying that PA adoption promotes profitability and resource use 

efficiency, evidence is patchy by farm size, technology, and geography. Multi-season long-

term studies with comparison of packages of technologies are few. This limitation 

underscores the importance of systematic synthesis to improve understanding of economic 

and environmental consequences of PA adoption in mixed farming systems. 

 

Farm Profit and Resource Use Efficiency 

Precision and digital agriculture have been examined for their ability to transform farm 

profitability as well as the manner in which inputs (water, crop protection, fertilizer) are 

managed. Conceptual and initial empirical research laid the groundwork by 

demonstrating how site-specific management and data-driven decision-making can 

enhance resource targeting and guide farm management decisions (Bongiovanni & 

Lowenberg-DeBoer, 2004). That study highlighted that accuracy approaches can balance 

production objectives and low-input waste, but cautioned against economic and 

institutional limitations that influence adoption.  

Wider vision of PA in food systems placed PA in the context of global world food security 

and the environment and reasoned that spatially-explicit monitoring and management 

can enable more sustainable intensification if supplemented by proper decision support 

and institutional arrangements (Gebbers & Adamchuk, 2010). This research stream 

highlighted technology potential with emphasis on aligning with agronomic, economic, 

and social systems. 

 

Empirical tests of profitability have yielded mixed but useful findings 

Some farm-level and whole-farm studies indicate positive net returns to adoption of 

technologies such as variable-rate application (VRA), auto-steer, and yield monitoring 

where management capacity and scale permit; however, other strong ex-post studies find 

that aggregate whole-farm profit increases are small and setting-dependent, implying 

that operating efficiency is not always associated with higher net farm receipts under all 

circumstances (Schimmelpfennig, 2016; Dhoubhadel, 2021). Collectively, these studies 

suggest that there is variation by crop, region, and farm size, and that sampled 
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profitability is extremely sensitive to horizon, cost allocation, and whether or not learning-

curve effects are included.  

From the point of view of resource-use efficiency, a number of syntheses and empirical 

studies report decreases in fertilizer, water, and pesticide use where precision technology 

is applied effectively. 

Machine-assisted sensing and data analysis reviews summarize that sensor-based 

nutrient management and precision irrigation can save nutrient and water inputs by a 

significant percentage without incurring yield losses, enhancing economic input efficiency 

and environmental performance (Liakos et al., 2018; recent precision irrigation reviews). 

Evidence is shown across various crop systems and climates but the magnitude of savings 

differs with technology maturity and site conditions. Adoption hurdles are persistently 

underscored in the literature as driving whom stands to gain economically and 

environmentally from PA. 

High initial capital expenses, indefinite investment return, restricted financial access, 

information management and interoperability, technical assistance and training 

inadequacies are termed significant hindrances particularly for small and medium farms 

by research. Research on IoT and connectivity drivers identifies infrastructure constraints 

(broadband in rural areas, electricity) and data handling requirements as near-term 

constraints to optimal economic value of digital technology in agriculture. 

Policy and institutional action is therefore widely advocated to increase pervasive, 

equitable uptake (Hundal et al., 2023; Mitchell et al., 2021). ScienceDirect +1 Lastly, more 

recent life-cycle and integrated analysis add nuance in thought by considering 

environmental trade-offs and overall system expense. These analyses demonstrate that, 

with efficient application and upkeep, PA can decrease input-based emissions and 

resource bases at the expense of none or even more yield; but they also raise issues about 

embedded costs (hardware, data subscription, maintenance) and the necessity for longer-

term, multi-seasonal analyses in order to catch dynamic effects and depreciation in benefit 

flows. 

This has given rise to demands for increased longitudinal and comparative research that 

thoroughly examines bundled technologies and heterogeneity across farm sizes and 

agroecological contexts. 

 

Machine learning in Agriculture 

Machine Learning in Agriculture Machine learning (ML) classic supervised and 

unsupervised, and deep learning (DL) techniques have emerged as an essential tool over 

the last few years to glean useful information from diverse agri-data (satellite and UAV 

imagery, proximal sensors, IoT streams, and past yield histories). Early and systematic 

reviews have established that ML facilitates having applications in crop, soil, water and 

animal management through improved accuracy of predictions and facilitating 

automation of previously human observation-dependent tasks. Early syntheses indicate 

that ML converts multi-source information into decision support in yield forecasting, 

disease and pest detection, weed mapping, phenotyping, and irrigation scheduling. Deep 

learning techniques (convolutional and recurrent neural networks) have most notably 
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been impactful on image-based applications like disease diagnosis, fruit identification, 

and land cover and crop classification from remote sensing. The Kamilaris & Prenafeta-

Boldú survey highlights that CNNs and similar architectures always perform better than 

classical approaches in imagery-based tasks, and noting training data restrictions in 

terms of requirements, environmental generalization, and requiring annotated datasets. 

The review advocates for transfer learning and data augmentation as suitable solutions 

for mitigating the problem of scarcity in the data for most agricultural issues. The most 

investigated ML application is crop yield prediction. Systematic reviews of yield 

prediction indicate that ensemble methods, random forests, gradient boosting, and neural 

networks (including CNNs and LSTM models) tend to be generally better than linear 

models when used in conjunction with remote sensing variables, weather time-series, and 

soil information. These reviews do mention the chronic issues of feature engineering, 

transferability across domains, and high out-of-sample validation — all of which impact 

the validity of operational yield forecasts. A couple of reviews provide an overview of ML 

across the entire range of agricultural activities and observe a definite shift away from 

traditional ML (SVM, RF, k-NN) to deep learning for unstructured data. Liakos et al.'s 

general overview illustrates how extensively ML techniques have been used to address 

cover crop management (yield, disease, weed detection), animal tracking (behaviour and 

welfare), water management, and soil analysis; their contribution shows the importance 

of integrating knowledge of the domain with the selection of the ML model and proper 

validation in order to get useful, farm-scale applicability. In addition to algorithmic 

ability, reviews later on address socio-technical and deployment issues. Benos et al. (2021) 

report recent synthesis of ML adoption processes, citing data availability, sensor networks 

(satellite, UAV, in-field), and institutional environments of scalability for ML solutions. 

Reproducibility, data format interoperability, and economics of data services (subscription 

schemes, cloud computing charges) are reported to be drivers of whether ML models scale 

up from research prototypes to farmer-faced tools. Reviews mentioning explicit agronomic 

challenges (e.g., yield prediction and nitrogen status estimation of yield) emphasize the 

sensor fusion blending remote sensing, proximal sensors and weather data — to improve 

estimation accuracy. Chlingaryan, Suk.karieh, & Whelan (2018) reviewed yield and 

estimation of nitrogen status and noted that the ML methods of multi-sensor fusion 

provide better estimates than single-source models but need to be adopted in terms of 

simplifying decision interfaces as well as in economic validation by farmers. 

Methodological reviews also highlight assessment standards: numerous authors 

emphasize stronger cross-validation, multi-season validation, and uncertainty metric 

reporting (RMSE, MAE, R²) to enable equitable comparison among algorithms and 

express decision-maker risks. van Klompenburg et al.'s systematic review of crop-yield 

ML literature implies methodological improvement has been accompanied by inconsistent 

reporting and minimal multi-region testing that persist as impediments to increased 

adoption. Lastly, a number of the meta-reviews propose ethical, equity, and 

infrastructural issues. "Big data" and smart farming reviews pose rural connectivity 

deficits, data governance, and the concern that ML-based benefits will disproportionately 

accrue to more extensive and better-off farms unless policy and cooperative schemes make 
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collective access to data and analytics more possible. These socio-technical criticisms 

contend that unlocking agriculture's ML potential will entail collective investment in data 

infrastructure, model evaluation standards, and business models that distribute the 

benefits more widely 

 

Precision Agriculture 

Precision agriculture is a spatially and temporally variant data-driven farm management 

system with spatial and temporal variability in fields included to maximize input 

allocation in order to maximize economic return and minimize environmental effects 

(Zhang et al., 2002). 

 

Farm Profitability 

Farm profitability is the net monetary surplus that is left after deducting all the costs of 

production, including capital and labor. It is a crucial measure of farm sustainability and 

capacity to invest in the long term (Ellis, 1993). 

 

Resource Use Efficiency 

Resource use efficiency refers to the degree to which farms can achieve maximum output 

from a given set of inputs or achieve minimum input utilization for a given level of output 

compared with a production frontier (Farrell, 1957). 

 

Technology Adoption 

Technology adoption refers to the multi-step process through which individuals or 

organizations move from knowledge of innovation to its adoption and use, motivated by 

perceived benefits and compatibility among other variables (Rogers, 2003). 

 

Variable-Rate Technology (VRT) 

Variable-rate technology is one of the primary precision agriculture tools used for site-

specific delivery of inputs like fertilizers, seed, and pesticides to maximize efficiency 

through consideration of within-field heterogeneity (Pierce & Nowak, 1999). 

 

Sustainable Intensification 

Sustainable intensification refers to the process of increasing productivity on existing land 

cultivated while maintaining ecosystem services and natural capital in favor of longer-

term sustainability (Pretty, 2018). 

 

Methodology 

This article utilizes a systematic literature review (SLR) in establishing the economic 

effect of adopting precision agriculture (PA) on farm profitability as well as the efficiency 

of resource use in the United States. Systematic review approach was utilized to promote 

transparency, replicability, and complete coverage of evidence. The process followed 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines (Moher et al., 2009). 
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Applicable literature was obtained through Web of Science, Scopus, EconLit, 

ScienceDirect, and USDA Economic Research Service databases from 2000 to 2025. The 

search strategy was performed on the basis of keywords like "precision agriculture," 

"digital farming," "farm profitability," "economic impact," "use of resources efficiency," and 

"United States." Grey literature such as reports by USDA and working papers were also 

included to minimize publication bias. Studies were considered if they (i) provided 

economic impact of PA adoption (profit, cost savings, or return on investment), (ii) 

measured use efficiency of resources (maximization of fertilizer, water, or pesticide), and 

(iii) addressed U.S. agriculture. Exclusion criteria removed non-economic studies that 

were technically or agronomically focused and not in the U.S. setting. 

Three-stage screening title/abstract screening, full-text review, and eligibility check 

resulted in inclusion of 47 studies. Study details (author, year, farm size, type of 

crop/livestock), technologies assessed, methodology employed, and reported results were 

extracted. Thematic synthesis was applied to categorize findings into two dimensions: (1) 

economic implications (cost and profitability) and (2) efficiency in resource utilization 

(optimization of fertilizer, water, and pesticides). Where quantitative findings were 

similar, descriptive statistics were presented; otherwise, emergent trends and 

discrepancies were addressed through a narrative synthesis. 

The systematic methodology presents a formal assessment of the literature where 

conclusions are drawn from adequate and varied sources with limitations recognized in 

terms of heterogeneity of methods and publication bias. 

 

Result 

Database search returned 246 records. Following screening and duplicates removal, 47 

studies were found to meet the inclusion criteria. Figure 1 (PRISMA flow diagram) shows 

identification, screening, and eligibility process. 

 

Characteristics of Included Studies 

Table 1 summarizes the study characteristics of the included studies. The majority of 

studies (68%) were on row crops like corn, soybeans, and wheat. Specialty crop studies 

accounted for 21% of the studies, and livestock-focused studies accounted for 11%. Most 

commonly reviewed technologies were GPS-guided equipment, variable rate application 

(VRA), and yield monitors, with increasing interest in drones and sensor irrigation. 

 

Table 1. Characteristics of included studies by production system 

Production System Percentage of Studies (%) 

Row crops (corn, soybean, wheat) 68 

Specialty crops (fruits, vegetables) 21 

Livestock 11 

Economic Implications 

 

Literature results provide evidence that PA adoption tends to increase farm profitability, 

and this varies depending on farm size and technology type. In Table 2, large-scale farms 
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made between 5% and 25% gains in profitability from VRA technologies and auto-steer 

technology. Medium-scale farms made modest gains (3–10%) from GPS-guided equipment 

and yield monitors. Small-scale farms made modest (1–5%) gains because of high up-front 

capital investments and low returns from adoption. 

 

Table 2. Financial effects of embracing precision agriculture by farm size 

Farm Size Profitability Gain (%) Key Technologies Driving Gains 

Large-scale 5–25 VRA, Auto-steer, Yield Monitors 

Medium-scale 3–10 VRA, GPS-guided machinery 

Small-scale 1–5 Low adoption due to high costs 

 

Resource Use Efficiency 

PA adoption was always found to be linked with enhanced input efficiency. Use of 

fertilizer was reduced by 10–20% without compromising any yield, whereas water savings 

were between 15–30%, mainly in arid areas implementing sensor-based irrigation. 

Application of pest control was reduced by 5–15% because of aimed spraying and drone 

applications (Table 3). 

 

Table 3. Resource use efficiency achievements due to PA adoption 

Resource Reduction Range 

(%) 

Notes 

Fertilizer 10–20 Savings without yield penalty 

Water 15–30 Highest in arid regions with sensor irrigation 

Pesticides 5–15 Linked to targeted spraying and drones 

 

Barriers to Adoption 

Adoption is, however, lopsided, and while there are favorable economic and efficiency 

gains, small and medium-sized farms had high initial investment cost, low technical 

capacity, and reduced credit accessibility as primary constraints. Economies of scale were 

emphasized in some studies with adoption focusing on the larger ones that have the ability 

to absorb high risk and capture cost-reducing technology. 

In summary, the data indicate that precision agriculture provides quantifiable 

profitability and efficiency payoffs from resource use in U.S. agriculture, but they come in 

patches. The economic benefits accrue mostly to large farms, and opportunities for smaller 

farms are restricted because of cost and knowledge constraints 

 

Discussion 

The review offers systematic evidence on the economic effects of the adoption of precision 

agriculture (PA). Findings confirm that PA enhances farm profitability and efficiency in 

the use of resources, though the magnitude of benefits rests considerably on farm size and 

operation scale. 
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Profitability and Farm Scale 

Findings agree with earlier studies that have emphasized economies of scale in the 

adoption of agricultural technology. Large farms registered increases in profit ranging 

from 5% to 25%, which is in line with earlier studies showing that mechanization and ICT 

perform best when applied across extensive areas. Returns were lower in medium-scale 

farms with small-scale farms hindered by obstacles halting economic gain. This skewed 

distribution implies that although PA can redefine U.S. agriculture, its gains are still 

limited to bigger producers and thus perpetuate existing structural disparities in the 

industry. 

 

Efficiency and Environmental Sustainability of Resource Use 

These declines observed in the use of fertilizers, water, and pesticides point to the role of 

PA towards ensuring environmental sustainability. The 10–20% yield-sacrifice-free 

reductions in fertilizers point to the capability of VRA technologies to contain excessive 

fertilization with nutrients and prevent runoff into water bodies. Even 30% savings of 

water in arid areas also confirm the strategic value of PA in helping U.S. agriculture to 

cope with climate change and water scarcity. These findings are aligned with evidence 

that resource-saving farm practices enhance long-term sustainability, as well as farm 

resilience. 

 

Barriers to Adoption 

These advantages aside, adoption continues to be plagued by hindrances, notably on the 

part of small- and medium-scale farmers. Excessive initial investment capital 

requirements, technical know-how deficiency, and poor access to credit were mentioned 

several times across the examined studies. This concurs with national reports labeling 

financial risk and uncertainty as primary barriers to digital agriculture. Unless policy 

measures, including subsidies, cost-sharing programs, and institution building, are 

specifically aimed at small farms, they may well continue to lag behind in the level of 

adoption, thus further widening the productivity differentials between farm sizes. 

 

Policy Implications 

The results have several implications for U.S. agricultural policy. First, federal and state 

government assistance may be able to overcome the barriers to adoption of smallholders 

through instruments such as equipment-sharing cooperatives, training programs, and 

precision agriculture tax incentives. Second, based on identified environmental co-

benefits, PA can be incorporated in U.S. Department of Agriculture's Natural Resources 

Conservation Service (NRCS) managed conservation programs and promoted by 

environmental stewardship payments. Third, as global warming accelerates, water-

saving technologies and evidence-based irrigation management policies will become ever 

more significant. 

 

Limitations and Future Research 

This research contains several limitations. The evidence was published, and this evidence 

is bound to be affected by publication bias because only those studies with a positive effect 
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are published. In addition, although profitability and efficiency measures were 

extensively reported, fewer reported detailed cost-benefit analyses at farm level, and it is 

therefore not possible to obtain the full set of financial results. Future studies need to give 

emphasis to longitudinal trials tracking adoption impacts over successive seasons, and 

cross-country or cross-region comparisons from multiple locations and crop systems. The 

combination of economic analysis and life-cycle assessment would also give both economic 

and environmental implications of PA adoption greater insight. 

Together, the data indicate that precision agriculture can be an economic stimulus and 

an agricultural sustainability strategy for the United States. That the benefits are not 

being shared equitably, however, indicates that policies and support systems with broad 

impact must be implemented so that all farm sizes can avail themselves of and benefit 

from this technological shift. 

 

Conclusion 

The research attests to the fact that adoption of precision agriculture (PA) provides 

considerable economic and environmental advantages in agricultural systems. Growth in 

profit was highest in medium-scale and large-scale farms, where varia-rate application, 

auto-steer technology, and yield monitor technologies recorded 5% to 25% returns. Some 

growth was recorded by medium-scale farms, whereas small-scale farms recorded very 

little growth due to the high demand of capital during the start and information barriers. 

Besides economic efficiency, PA uptake always increased the efficiency of usage of 

resources, conserving 10–20% of the fertilizer, 15–30% of water, and 5–15% of pesticides. 

These findings demonstrate PA's dual function of making farms more profitable and 

promoting sustainable production. Adoption is still uneven, though, because structural 

and financial constraints weigh down extensive adoption. 

 

Recommendations 

 Enhance Financial Access: Implement subsidies, tax refunds, and cost-sharing 

programs to make the initial cost of PA technologies less expensive and foster wider 

use. 

 Enhance Knowledge Transfer: Create training modules, extension services, and 

farmer-to-farmer transfer programs to enhance technical skills and enhance 

utilization of digital resources. 

 Support Shared Models: Promote cooperative ownership and machinery-sharing 

enterprises to lower capital expenditure for small- and medium-scale enterprises. 

 Integrate PA with Sustainability Schemes: Balance PA take-up with agri-

environment schemes and conservation techniques to promote practices with 

quantifiable environmental impacts. 

 Set Up Research and Infrastructure: Fund research on long-term profitability and 

environmental impacts across varied farming systems, along with investment in 

digital infrastructure to enhance technology adoption. 
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