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Abstract

The rapid development of
precision agriculture (PA)
has transformed farming
practices by integrating
digital technologies such
as GPS-guided machinery,
variable rate application
systems, drones, and
sensor-based monitoring
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INTRODUCTION

Agriculture has
experienced radical
change since the
beginning of the last
century, fueled by
technological revolution,
policy  transformations,

and shifting consumer
tastes. In recent decades,
the development of
precision agriculture (PA)
has been regarded as a
fundamental change in
agricultural practices,
with the potential to boost

efficiency, decrease costs,

and increase
sustainability. Precision
agriculture refers to the
convergence of
technologies like Global
Positioning Systems
(GPS), Geographic
Information Systems
(GIS), remote sensing,
drones, artificial

intelligence  (AI), and
sensor-based monitoring
systems to maximize field-
level management of
livestock and crops. These
technologies allow farmers
to apply inputs like water,
fertilizers, and pesticides
in accurate quantity and
thus

wastage and improving

place, avoiding
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tools. This study conducts a
review of
literature published
between 2000 and 2025 to
the
implications of PA adoption
in the United States, with a
focus on farm profitability

systematic

evaluate economic

and resource use efficiency.

through
yield

cost reductions,
optimization, and
long-term efficiency gains.
Profitability increases
ranged from 5% to 25%,
with
realizing

large-scale  farms
the

returns due to economies of

greatest

scale, while smaller farms

However, adoption barriers
such as high capital costs,

knowledge gaps, and
limited access to financing
restrict wider
implementation,

particularly among small
and medium-sized farms.
The review concludes that

Using the PRISMA faced slower returns on while precision agriculture
framework, 47 relevant investment. Evidence also enhances economic and
studies were identified demonstrates substantial environmental outcomes,
from peer-reviewed improvements in resource targeted policy support is
journals, USDA reports, use efficiency, including essential to ensure
and grey literature. fertilizer reductions of 10— equitable access and
Findings indicate that PA  20%, water savings of 15— maximize national
adoption generally  30%, and pesticide agricultural sustainability
improves profitability = reductions of up to 15%. goals.

verall efficiency in resource usage (Gebbers & Adamchuk, 2010).

The U.S. agriculture sector is being increasingly challenged with challenges like

increasing input prices, labor scarcity, weather variability, and growing
environmental issues (Schimmelpfennig, 2016). Traditional agriculture is based on
homogenous application of inputs, leading to inefficiency, excessive use of resources, and
adverse environmental spillovers like soil erosion, water pollution, and greenhouse gas
emissions. Precision agriculture offers the promise of solving this problem by merging
farm management decisions with site-specific requirements, thus enabling farmers to
maximize yield potential and reduce input costs and environmental effects Although
promising, the economic effects of precision agriculture applications are controversial. On
the other hand, advocates are claiming that adoption of precision technology can result in
increased profitability in terms of increased yields, decreased input prices, and long-run
efficiency returns (Robertson et al., 2012). Critics, on the other hand, refer to a few major
impediments in the guise of large initial capital outlays, learning curves with technology,
and small compared to large farm range of adoption (Daberkow & McBride, 2003). These
barriers also bring into question whether or not the economic benefit is distributed evenly
among U.S. farms of varying size and location.
Furthermore, the uptake of precision agriculture intersects with wider policy and
sustainability objectives. Government schemes and incentives, as the case of the
conservation programs in the U.S. Farm Bill, have increasingly promoted sustainable
agriculture that reconciles farm profitability and sound environmental control (USDA,
2021). It is hence imperative to understand how precision agriculture responds to
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profitability as well as to resource efficiency in a bid to inform policy institutions,
investment choices, and extension services aimed at U.S. farmers.

This research attempts to analyze the economic impact of the implementation of precision
agriculture in the US, and most importantly, its influence on farm profitability and
resource-use efficiency. Using the available farm-level data and adoption behavior, the
research attempts to find out if precision agriculture has quantifiable financial gains,
improved input-use efficiency, and environmentally friendly agriculture production. In
doing so, the study will advance the current debate about the future of US agriculture and
what role digital technologies are going to have in determining it, and illuminate
challenges and opportunities for additional use.

Research Objectives

e To assess the effect of embracing precision agriculture on farm profitability as
gauged by changes in crop output, production costs, and net returns.

e To determine the extent to which precision agriculture technology increases the
efficiency in resource use, especially in the use of inputs like water, fertilizers, and
pesticides.

e To contrast the economic performance of farms employing precision agriculture with
those employing conventional farming.

e To measure the impact of farm size, capital investment, and technology type on the
economic efficiency of precision agriculture adoption.

e To determine the enablers and disablers on the adoption decisions of precision
agriculture technology by farmers, with economic factors.

e To synthesize evidence from existing literature and case studies to offer policy and
managerial guidelines towards making precision agriculture viable and sustainable.
Review of related literature

Economic Implications of Precision Agriculture

The economic implication of precision agriculture (PA) has been sufficiently documented.
Griffin et al. (2018) indicated that profitability returns due to PA technologies are
extremely diverse and contingent upon size of farm, level of technology, and management
intensity. Long-term empirical analyses by Yost et al. (2019) revealed that PA systems
continued to remain profitable in the majority of sectors, thus implying that adoption can
generate steady financial returns when combined with conservation practices. Pedersen
(2023) also noted that adopters of sophisticated PA technology packages possess higher
technical efficiency than non-adopters, signifying the importance of integrated
approaches to economic benefits.

Resource-Use Efficiency and Environmental Sustainability

A body of literatures have documented the sustainability impacts of PA. Onyango et al.
(2021) have undertaken a systematic review and established that plant and soil sensors,
GIS, and simulation models significantly enhanced nutrient and water management in
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smallholder systems. Liakos et al. (2018) have also established that sensor-based
irrigation is able to save up to 25% of water without affecting yield performance. Later,
Popovié et al. (2024) established that PA practice adoption saves about 15% in fertilizer
and 20% in crop protection, demonstrating environmental as well as economic savings.

Barriers to Adoption

Adoption continues to be hindered by various barriers despite this. Mitchell et al. (2021)
found technology cost and absence of demonstrated value to be major disincentives to
adoption in Canadian agriculture production systems. Hundal et al. (2023) built upon
these results through a questionnaire of Internet of Things (IoT) enabled PA practice and
sketching issues with power demands, wireless communication, and scalability. These
outcomes indicate that technical as well as financial factors influence the adoption path
of PA for regions and manufacturing systems.

In spite of evidence verifying that PA adoption promotes profitability and resource use
efficiency, evidence is patchy by farm size, technology, and geography. Multi-season long-
term studies with comparison of packages of technologies are few. This limitation
underscores the importance of systematic synthesis to improve understanding of economic

and environmental consequences of PA adoption in mixed farming systems.

Farm Profit and Resource Use Efficiency

Precision and digital agriculture have been examined for their ability to transform farm
profitability as well as the manner in which inputs (water, crop protection, fertilizer) are
managed. Conceptual and initial empirical research laid the groundwork by
demonstrating how site-specific management and data-driven decision-making can
enhance resource targeting and guide farm management decisions (Bongiovanni &
Lowenberg-DeBoer, 2004). That study highlighted that accuracy approaches can balance
production objectives and low-input waste, but cautioned against economic and
institutional limitations that influence adoption.

Wider vision of PA in food systems placed PA in the context of global world food security
and the environment and reasoned that spatially-explicit monitoring and management
can enable more sustainable intensification if supplemented by proper decision support
and institutional arrangements (Gebbers & Adamchuk, 2010). This research stream
highlighted technology potential with emphasis on aligning with agronomic, economic,
and social systems.

Empirical tests of profitability have yielded mixed but useful findings

Some farm-level and whole-farm studies indicate positive net returns to adoption of
technologies such as variable-rate application (VRA), auto-steer, and yield monitoring
where management capacity and scale permit; however, other strong ex-post studies find
that aggregate whole-farm profit increases are small and setting-dependent, implying
that operating efficiency is not always associated with higher net farm receipts under all
circumstances (Schimmelpfennig, 2016; Dhoubhadel, 2021). Collectively, these studies
suggest that there is variation by crop, region, and farm size, and that sampled
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profitability is extremely sensitive to horizon, cost allocation, and whether or not learning-
curve effects are included.

From the point of view of resource-use efficiency, a number of syntheses and empirical
studies report decreases in fertilizer, water, and pesticide use where precision technology
is applied effectively.

Machine-assisted sensing and data analysis reviews summarize that sensor-based
nutrient management and precision irrigation can save nutrient and water inputs by a
significant percentage without incurring yield losses, enhancing economic input efficiency
and environmental performance (Liakos et al., 2018; recent precision irrigation reviews).
Evidence is shown across various crop systems and climates but the magnitude of savings
differs with technology maturity and site conditions. Adoption hurdles are persistently
underscored in the literature as driving whom stands to gain economically and
environmentally from PA.

High initial capital expenses, indefinite investment return, restricted financial access,
information management and interoperability, technical assistance and training
inadequacies are termed significant hindrances particularly for small and medium farms
by research. Research on IoT and connectivity drivers identifies infrastructure constraints
(broadband in rural areas, electricity) and data handling requirements as near-term
constraints to optimal economic value of digital technology in agriculture.

Policy and institutional action is therefore widely advocated to increase pervasive,
equitable uptake (Hundal et al., 2023; Mitchell et al., 2021). ScienceDirect +1 Lastly, more
recent life-cycle and integrated analysis add nuance in thought by considering
environmental trade-offs and overall system expense. These analyses demonstrate that,
with efficient application and upkeep, PA can decrease input-based emissions and
resource bases at the expense of none or even more yield; but they also raise issues about
embedded costs (hardware, data subscription, maintenance) and the necessity for longer-
term, multi-seasonal analyses in order to catch dynamic effects and depreciation in benefit
flows.

This has given rise to demands for increased longitudinal and comparative research that
thoroughly examines bundled technologies and heterogeneity across farm sizes and
agroecological contexts.

Machine learning in Agriculture

Machine Learning in Agriculture Machine learning (ML) classic supervised and
unsupervised, and deep learning (DL) techniques have emerged as an essential tool over
the last few years to glean useful information from diverse agri-data (satellite and UAV
imagery, proximal sensors, IoT streams, and past yield histories). Early and systematic
reviews have established that ML facilitates having applications in crop, soil, water and
animal management through improved accuracy of predictions and facilitating
automation of previously human observation-dependent tasks. Early syntheses indicate
that ML converts multi-source information into decision support in yield forecasting,
disease and pest detection, weed mapping, phenotyping, and irrigation scheduling. Deep
learning techniques (convolutional and recurrent neural networks) have most notably
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been impactful on image-based applications like disease diagnosis, fruit identification,
and land cover and crop classification from remote sensing. The Kamilaris & Prenafeta-
Boldu survey highlights that CNNs and similar architectures always perform better than
classical approaches in imagery-based tasks, and noting training data restrictions in
terms of requirements, environmental generalization, and requiring annotated datasets.
The review advocates for transfer learning and data augmentation as suitable solutions
for mitigating the problem of scarcity in the data for most agricultural issues. The most
investigated ML application is crop yield prediction. Systematic reviews of yield
prediction indicate that ensemble methods, random forests, gradient boosting, and neural
networks (including CNNs and LSTM models) tend to be generally better than linear
models when used in conjunction with remote sensing variables, weather time-series, and
soil information. These reviews do mention the chronic issues of feature engineering,
transferability across domains, and high out-of-sample validation — all of which impact
the validity of operational yield forecasts. A couple of reviews provide an overview of ML
across the entire range of agricultural activities and observe a definite shift away from
traditional ML (SVM, RF, k-NN) to deep learning for unstructured data. Liakos et al.'s
general overview illustrates how extensively ML techniques have been used to address
cover crop management (yield, disease, weed detection), animal tracking (behaviour and
welfare), water management, and soil analysis; their contribution shows the importance
of integrating knowledge of the domain with the selection of the ML model and proper
validation in order to get useful, farm-scale applicability. In addition to algorithmic
ability, reviews later on address socio-technical and deployment issues. Benos et al. (2021)
report recent synthesis of ML adoption processes, citing data availability, sensor networks
(satellite, UAV, in-field), and institutional environments of scalability for ML solutions.
Reproducibility, data format interoperability, and economics of data services (subscription
schemes, cloud computing charges) are reported to be drivers of whether ML models scale
up from research prototypes to farmer-faced tools. Reviews mentioning explicit agronomic
challenges (e.g., yield prediction and nitrogen status estimation of yield) emphasize the
sensor fusion blending remote sensing, proximal sensors and weather data — to improve
estimation accuracy. Chlingaryan, Suk.karieh, & Whelan (2018) reviewed yield and
estimation of nitrogen status and noted that the ML methods of multi-sensor fusion
provide better estimates than single-source models but need to be adopted in terms of
simplifying decision interfaces as well as in economic validation by farmers.
Methodological reviews also highlight assessment standards: numerous authors
emphasize stronger cross-validation, multi-season validation, and uncertainty metric
reporting (RMSE, MAE, R?) to enable equitable comparison among algorithms and
express decision-maker risks. van Klompenburg et al.'s systematic review of crop-yield
ML literature implies methodological improvement has been accompanied by inconsistent
reporting and minimal multi-region testing that persist as impediments to increased
adoption. Lastly, a number of the meta-reviews propose ethical, equity, and
infrastructural issues. "Big data" and smart farming reviews pose rural connectivity
deficits, data governance, and the concern that ML-based benefits will disproportionately
accrue to more extensive and better-off farms unless policy and cooperative schemes make
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collective access to data and analytics more possible. These socio-technical criticisms
contend that unlocking agriculture's ML potential will entail collective investment in data
infrastructure, model evaluation standards, and business models that distribute the
benefits more widely

Precision Agriculture

Precision agriculture is a spatially and temporally variant data-driven farm management
system with spatial and temporal variability in fields included to maximize input
allocation in order to maximize economic return and minimize environmental effects
(Zhang et al., 2002).

Farm Profitability

Farm profitability is the net monetary surplus that is left after deducting all the costs of
production, including capital and labor. It is a crucial measure of farm sustainability and
capacity to invest in the long term (Ellis, 1993).

Resource Use Efficiency

Resource use efficiency refers to the degree to which farms can achieve maximum output
from a given set of inputs or achieve minimum input utilization for a given level of output
compared with a production frontier (Farrell, 1957).

Technology Adoption

Technology adoption refers to the multi-step process through which individuals or
organizations move from knowledge of innovation to its adoption and use, motivated by
perceived benefits and compatibility among other variables (Rogers, 2003).

Variable-Rate Technology (VRT)

Variable-rate technology is one of the primary precision agriculture tools used for site-
specific delivery of inputs like fertilizers, seed, and pesticides to maximize efficiency
through consideration of within-field heterogeneity (Pierce & Nowak, 1999).

Sustainable Intensification

Sustainable intensification refers to the process of increasing productivity on existing land
cultivated while maintaining ecosystem services and natural capital in favor of longer-
term sustainability (Pretty, 2018).

Methodology

This article utilizes a systematic literature review (SLR) in establishing the economic
effect of adopting precision agriculture (PA) on farm profitability as well as the efficiency
of resource use in the United States. Systematic review approach was utilized to promote
transparency, replicability, and complete coverage of evidence. The process followed
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Moher et al., 2009).
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Applicable literature was obtained through Web of Science, Scopus, EconlLit,
ScienceDirect, and USDA Economic Research Service databases from 2000 to 2025. The
search strategy was performed on the basis of keywords like "precision agriculture,"

"digital farming," "farm profitability," "economic impact," "use of resources efficiency," and
"United States." Grey literature such as reports by USDA and working papers were also
included to minimize publication bias. Studies were considered if they (i) provided
economic impact of PA adoption (profit, cost savings, or return on investment), (ii)
measured use efficiency of resources (maximization of fertilizer, water, or pesticide), and
(1i1) addressed U.S. agriculture. Exclusion criteria removed non-economic studies that
were technically or agronomically focused and not in the U.S. setting.

Three-stage screening title/abstract screening, full-text review, and eligibility check
resulted in inclusion of 47 studies. Study details (author, year, farm size, type of
crop/livestock), technologies assessed, methodology employed, and reported results were
extracted. Thematic synthesis was applied to categorize findings into two dimensions: (1)
economic implications (cost and profitability) and (2) efficiency in resource utilization
(optimization of fertilizer, water, and pesticides). Where quantitative findings were
similar, descriptive statistics were presented; otherwise, emergent trends and
discrepancies were addressed through a narrative synthesis.

The systematic methodology presents a formal assessment of the literature where
conclusions are drawn from adequate and varied sources with limitations recognized in
terms of heterogeneity of methods and publication bias.

Result

Database search returned 246 records. Following screening and duplicates removal, 47
studies were found to meet the inclusion criteria. Figure 1 (PRISMA flow diagram) shows
identification, screening, and eligibility process.

Characteristics of Included Studies

Table 1 summarizes the study characteristics of the included studies. The majority of
studies (68%) were on row crops like corn, soybeans, and wheat. Specialty crop studies
accounted for 21% of the studies, and livestock-focused studies accounted for 11%. Most
commonly reviewed technologies were GPS-guided equipment, variable rate application
(VRA), and yield monitors, with increasing interest in drones and sensor irrigation.

Table 1. Characteristics of included studies by production system

Production System Percentage of Studies (%)

Row crops (corn, soybean, wheat) 68
Specialty crops (fruits, vegetables) 21
Livestock 11

Economic Implications

Literature results provide evidence that PA adoption tends to increase farm profitability,
and this varies depending on farm size and technology type. In Table 2, large-scale farms
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made between 5% and 25% gains in profitability from VRA technologies and auto-steer
technology. Medium-scale farms made modest gains (3—10%) from GPS-guided equipment
and yield monitors. Small-scale farms made modest (1-5%) gains because of high up-front
capital investments and low returns from adoption.

Table 2. Financial effects of embracing precision agriculture by farm size

Large-scale 5-25 VRA, Auto-steer, Yield Monitors

Medium-scale 3-10 VRA, GPS-guided machinery
Small-scale 1-5 Low adoption due to high costs

Resource Use Efficiency

PA adoption was always found to be linked with enhanced input efficiency. Use of
fertilizer was reduced by 10-20% without compromising any yield, whereas water savings
were between 15-30%, mainly in arid areas implementing sensor-based irrigation.
Application of pest control was reduced by 5—-15% because of aimed spraying and drone
applications (Table 3).

Table 3. Resource use efficiency achievements due to PA adoption

Fertilizer 10-20 Savings without yield penalty
Water 15-30 Highest in arid regions with sensor irrigation
Pesticides | 5-15 Linked to targeted spraying and drones

Barriers to Adoption

Adoption is, however, lopsided, and while there are favorable economic and efficiency
gains, small and medium-sized farms had high initial investment cost, low technical
capacity, and reduced credit accessibility as primary constraints. Economies of scale were
emphasized in some studies with adoption focusing on the larger ones that have the ability
to absorb high risk and capture cost-reducing technology.

In summary, the data indicate that precision agriculture provides quantifiable
profitability and efficiency payoffs from resource use in U.S. agriculture, but they come in
patches. The economic benefits accrue mostly to large farms, and opportunities for smaller
farms are restricted because of cost and knowledge constraints

Discussion

The review offers systematic evidence on the economic effects of the adoption of precision
agriculture (PA). Findings confirm that PA enhances farm profitability and efficiency in
the use of resources, though the magnitude of benefits rests considerably on farm size and
operation scale.
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Profitability and Farm Scale

Findings agree with earlier studies that have emphasized economies of scale in the
adoption of agricultural technology. Large farms registered increases in profit ranging
from 5% to 25%, which is in line with earlier studies showing that mechanization and ICT
perform best when applied across extensive areas. Returns were lower in medium-scale
farms with small-scale farms hindered by obstacles halting economic gain. This skewed
distribution implies that although PA can redefine U.S. agriculture, its gains are still
limited to bigger producers and thus perpetuate existing structural disparities in the
industry.

Efficiency and Environmental Sustainability of Resource Use

These declines observed in the use of fertilizers, water, and pesticides point to the role of
PA towards ensuring environmental sustainability. The 10-20% yield-sacrifice-free
reductions in fertilizers point to the capability of VRA technologies to contain excessive
fertilization with nutrients and prevent runoff into water bodies. Even 30% savings of
water in arid areas also confirm the strategic value of PA in helping U.S. agriculture to
cope with climate change and water scarcity. These findings are aligned with evidence
that resource-saving farm practices enhance long-term sustainability, as well as farm
resilience.

Barriers to Adoption
These advantages aside, adoption continues to be plagued by hindrances, notably on the

part of small- and medium-scale farmers. Excessive initial investment capital
requirements, technical know-how deficiency, and poor access to credit were mentioned
several times across the examined studies. This concurs with national reports labeling
financial risk and uncertainty as primary barriers to digital agriculture. Unless policy
measures, including subsidies, cost-sharing programs, and institution building, are
specifically aimed at small farms, they may well continue to lag behind in the level of
adoption, thus further widening the productivity differentials between farm sizes.

Policy Implications
The results have several implications for U.S. agricultural policy. First, federal and state

government assistance may be able to overcome the barriers to adoption of smallholders
through instruments such as equipment-sharing cooperatives, training programs, and
precision agriculture tax incentives. Second, based on identified environmental co-
benefits, PA can be incorporated in U.S. Department of Agriculture's Natural Resources
Conservation Service (NRCS) managed conservation programs and promoted by
environmental stewardship payments. Third, as global warming accelerates, water-
saving technologies and evidence-based irrigation management policies will become ever
more significant.

Limitations and Future Research
This research contains several limitations. The evidence was published, and this evidence

is bound to be affected by publication bias because only those studies with a positive effect
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are published. In addition, although profitability and efficiency measures were
extensively reported, fewer reported detailed cost-benefit analyses at farm level, and it is
therefore not possible to obtain the full set of financial results. Future studies need to give
emphasis to longitudinal trials tracking adoption impacts over successive seasons, and
cross-country or cross-region comparisons from multiple locations and crop systems. The
combination of economic analysis and life-cycle assessment would also give both economic
and environmental implications of PA adoption greater insight.

Together, the data indicate that precision agriculture can be an economic stimulus and
an agricultural sustainability strategy for the United States. That the benefits are not
being shared equitably, however, indicates that policies and support systems with broad
impact must be implemented so that all farm sizes can avail themselves of and benefit
from this technological shift.

Conclusion

The research attests to the fact that adoption of precision agriculture (PA) provides
considerable economic and environmental advantages in agricultural systems. Growth in
profit was highest in medium-scale and large-scale farms, where varia-rate application,
auto-steer technology, and yield monitor technologies recorded 5% to 25% returns. Some
growth was recorded by medium-scale farms, whereas small-scale farms recorded very
little growth due to the high demand of capital during the start and information barriers.
Besides economic efficiency, PA uptake always increased the efficiency of usage of
resources, conserving 10—-20% of the fertilizer, 15—-30% of water, and 5-15% of pesticides.
These findings demonstrate PA's dual function of making farms more profitable and
promoting sustainable production. Adoption is still uneven, though, because structural
and financial constraints weigh down extensive adoption.

Recommendations

e Enhance Financial Access: Implement subsidies, tax refunds, and cost-sharing
programs to make the initial cost of PA technologies less expensive and foster wider
use.

e Enhance Knowledge Transfer: Create training modules, extension services, and
farmer-to-farmer transfer programs to enhance technical skills and enhance
utilization of digital resources.

e Support Shared Models: Promote cooperative ownership and machinery-sharing
enterprises to lower capital expenditure for small- and medium-scale enterprises.

e Integrate PA with Sustainability Schemes: Balance PA take-up with agri-
environment schemes and conservation techniques to promote practices with
quantifiable environmental impacts.

e Set Up Research and Infrastructure: Fund research on long-term profitability and
environmental impacts across varied farming systems, along with investment in
digital infrastructure to enhance technology adoption.
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