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Abstract  
With the emergence of 

smart grid, which presents 

the next generation of 

electrical power systems, 

residential and 

commercial buildings 

have the opportunities to 

manage their offices 

energy usage to reduce 

energy expenditure. This 

paper presents a 

differential evolution 

algorithm to optimize the 

energy production and 

consumption systems in a 

smart office with the 

integration of renewable 
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INTRODUCTION  
The increasing demand for 

energy-efficient and 

sustainable building 

operations necessitates 

advanced energy 

management strategies. 

(Abushnaf et al., 

2023).The integration of 

photovoltaic (PV) systems 

and battery storage offers 

a promising approach to 

reduce energy costs and 

enhance energy reliability. 

(Chen et al., 2022; Pal & 

Kumar, 2021). However, 

the intermittent nature of 

PV generation, coupled 

with fluctuating electricity 

prices under Time-of-Use 

(TOU) tariffs and variable 

building loads, poses 

significant challenges in 

optimizing energy flows 

(Panda & Pati, 2021). The 

Building, equipped with 

PV panels and a battery 

storage system, requires 

an effective energy 

management system 

(EMS) to minimize 

operational costs while 

satisfying electrical 

demand and adhering to 

system constraints. 

(Elkazaz et al., 2020).The 

primary challenge is to 

optimally schedule the  
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energy resources, and 

battery storage systems. 

The aim of the study is to 

optimize energy 

management in buildings 

by integrating a 

photovoltaic (PV) system 

with a battery storage 

system, using the 

Differential Evolution (DE) 

algorithm to minimize 

operational costs while 

ensuring efficient energy 

utilization and system 

reliability. To achieve this, 

energy model using PV, 

battery, and grid data over 

24 hours in 1- hour steps 

was developed; also, energy 

cost was minimized by 

optimizing PV battery and 

grid usage. Moreover, 

power balance was kept at 

equilibrium to meet load 

demand and enable grid 

export while battery limits 

is applied to state of charge 

(SOC), discharge rate and 

capacity. In addition, an 

heuristic differential 

evolution algorithm was 

used to solve the energy 

optimization problem. 

Three scenarios were 

evaluated to minimize costs 

of energy in the offices. 

Scenario I explored grid 

supply only, scenario II 

looked at electricity 

equilibrium of the micro 

grid with the PV and grid 

supply while scenario III 

considered equilibrium of 

the micro grid with PV, 

BESS and grid supply. 

Moreover, actual time-of-

use (𝑇𝑂𝑈) tariffs for 

electricity prices is 

evaluated. The simulation 

results of the devised model 

are given for different case 

studies and the 

effectiveness of the system 

is demonstrated via a 

comparative study. As a 

result, it was found that the 

operational costs are 

decreased nearly 92% by 

integrating only 

photovoltaic (𝑃𝑉) 

production according to the 

case which has no 

additional sources. Also, a 

substantial reduction of 

90% is achieved by 

considering both 𝑃𝑉 and 

𝐵𝐸𝑆𝑆. Results find the 

global optimum solution for 

the 24 − ℎ𝑜𝑢𝑟 horizon with 

important reduction of 

execution time and by 

achieving significant 

energy cost savings of the 

considered scenarios. To 

improve modeling and 

optimization of energy in 

smart buildings 

considering the benefits of 

PV and BESS on the power 

sector, genetic algorithm is 

a powerful optimization 

tool recommended for 

finding solutions to 

optimization of energy 

management decision 

variables like cost 

functions, power and so on. 

It gives the exact solution of 

micro grid energy 

management problems 

which converge as fast as 

possible as exemplified in 

this research study. 

 
ower generated by the PV system, the charge/discharge cycles of the battery 

storage, and the power exchanged with the national grid to achieve cost 

minimization. The objective is to minimize the total energy cost, which includes 

the cost of power purchased from the grid, revenue from selling excess power, and battery 

operational costs (e.g., charging and degradation costs). The system must account for 

constraints such as power balance, grid import/export limits, PV generation capacity, 

battery charging/discharging rates, and the prohibition of simultaneous charging and 

discharging. (Farid et al., 2022). The problem is further complicated by the non-linear and 

dynamic nature of the energy system, requiring a robust optimization technique capable 

p 
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of handling multiple variables and constraints. To ensure that comprehensive research is 

achieved, key questions to be addressed are as follows:  

1. To what extent does the BESS impact on energy cost savings in COET Building?  

2.  To what extent do cost function values of the three scenarios used in this research 

have to   differ? 

3. To what extent does the stochastic nature of 𝑃𝑉 affect the power output of the 

micro-grid 

 

However, this study aims to develop an energy management system for a smart Building 

using the differential evolution algorithm to optimize the integration of PV and battery 

storage systems, minimizing energy costs while ensuring reliable operation. It addresses 

the need for a sustainable energy management solution that can adapt to the real-world 

constraints and variable conditions, contributing to the efficient operation of the building. 

Also, the research addresses critical challenges in energy efficiency, environmental 

sustainability, and smart grid development. Its comprehensive approach offers a scalable, 

practical framework with far-reaching implications for building operations, policy, and 

academic research, making it a pivotal contribution to the global transition toward 

renewable energy systems. 

The Differential Evolution (DE) algorithm, a population-based heuristic optimization 

method, is proposed to address this challenge due to its ability to efficiently handle non-

linear, constrained optimization problems and find global optima. Unlike traditional 

methods like Mixed Integer Linear Programming (MILP), DE can effectively manage the 

non-linear dynamics of the Building’s energy system, including variable TOU tariffs 

(ranging from 0.017 to 0.572 $/kWh over 24 hours) and battery state-of-charge constraints 

involves formulating a single-objective constrained optimization model to minimize the 

cost function, incorporating terms for grid power over a 24-hour horizon with hourly key 

steps. ( Moghaddam et al., 2020) 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑛 (𝑡), 𝑃𝑔𝑟𝑖𝑑

𝑜𝑢𝑡 (𝑡), 𝑃𝑏
𝑐ℎ(𝑡), 𝑃𝑏

𝑑𝑐ℎ(𝑡), ∀𝑡{1,2, … . . ,24}                                                  (1) 

 

Key constraints include maintaining power balance, respecting grid and PV and battery 

storage capacity limits, and ensuring no simultaneous charging and discharging. (Hasan 

et al., 2021). 

 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑛 (𝑡) =  𝑃𝑏(𝑡) − 𝑃𝑏

𝑐ℎ(𝑡) − 𝑃𝑔
𝑖𝑛(𝑡) + 𝑃𝑏

𝑑𝑐ℎ(𝑡) + 𝑃𝑔𝑟𝑖𝑑
𝑜𝑢𝑡 (𝑡),                                    (2) 

0 ≤  𝑃𝑔𝑟𝑖𝑑
𝑖𝑛 (𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥(𝑡),                                                                                             (3) 

0 ≤  𝑃𝑔(𝑡) ≤ 𝑃𝑔
𝑚𝑎𝑥(𝑡),                                                                                                  (4) 

𝑆𝑂𝐶𝑏
𝑚𝑖𝑛(𝑡) ≤ 𝑆𝑂𝐶𝑏(𝑡) ≤ 1                                                                                          (5) 

∀𝑡 ∈ {1,2… .24}                                                                                                            (6) 

 

The Differential evolution algorithm will iteratively optimize these variables through 

initialization, mutation, crossover and selection steps to determine the optimal energy 

dispatch. (Rahman et al., 2020). 
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SYSTEM OVERVIEW 

THEORECTICAL FRAMEWORK 

Battery Storage Systems 

Battery Energy Storage Systems (BESS) are cutting-edge technologies that store 

electrical energy in rechargeable batteries for later use. They cater to a wide range of 

applications, from small gadgets to large-scale grid systems. Battery Energy Storage 

Systems (BESS) play a vital role in today’s energy landscape. They help us harness 

renewable energy, boost the reliability of our power grids and support a wide range of 

applications, no matter the scale (He. G., et al. (2025). 

These systems combine various types of batteries sodium – like nickel-metal hydride 

(NiMH), flow batteries, Sodium sulfur (NaS), lithium-ion, lead acid, nickel-cadmium 

(NiCD) with advanced battery systems (BMS) to ensure they perform safely and 

efficiently over time BESS are particularly useful for capturing energy when demand is 

low or when there’s an excess of generation, such as from renewable sources like solar or 

wind. They can then release this stored energy during peak demand times or when supply 

is short making them essential for tasks like peak shaving, reducing demand charges, 

regulating frequency, supporting voltage, and even helping to restore the grid after 

outages. (He. G., et al. (2025).  

 

Grid Application of Battery Storage 

Battery Energy Storage Systems (BESS) play a vital role in today’s power grid and 

commercial activities, especially as we see more renewable energy sources coming into 

play; 

I. Peak Shaving and Demand Charge Reduction: In commercial and 

industrial environments, BESS can store energy during off-peak times and 

release it during peak demand, helping to lower energy costs This strategy is 

especially beneficial for businesses like offices and manufacturing plants, where 

energy rates soar during peak hours. (He. G., et al. (2025). 

II. Grid Services: BESS are essential for providing key grid services such as 

frequency regulation, voltage support and black-start capabilities (Zhao et 

al.,2021). They react swiftly to imbalances in the grid, helping to stabilize 

frequency and voltage particularly in systems that rely heavily on renewable 

energy (He. G., et al. (2025). Additionally, BESS assist in restoring the grid after 

outages by supplying energy needed to restart main generators (Abdolazimi et 

al., 2022) 

III. Renewable Energy Integration: BESS help address the unpredictability of 

renewable energy sources like solar and wind by storing surplus energy and 

providing it during periods of low generation, which enhances the reliability of 

the grid.(He. G., et al. (2025) 

 

Energy Management 

Energy management is defined as a strategic and systematic process that encompasses 

the planning, monitoring, control, and optimization of energy use to enhance efficiency, 

http://www.harvardpublications.com/
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reduce costs, and minimize environmental impact. It involves the deployment of advanced 

technologies, such as energy management systems (EMS), smart grids, and energy 

storage systems, to collect and analyze data on energy consumption, temperature, 

occupancy, and other metrics. This data-driven approach enables informed decision-

making to reduce waste, improve infrastructure, and achieve energy savings through 

strategies like demand response and renewable energy integration. Energy management 

is driven by the need to address rising energy costs, comply with government regulations, 

and mitigate climate change, while leveraging innovations like the Internet of Things 

(IoT), artificial intelligence (AI), and blockchain to promote sustainable energy practices 

across residential, commercial, and industrial sectors (Zhao., B. 2021).). Energy 

management is a critical discipline in addressing the global demand for sustainable, 

efficient, and environmentally responsible energy use. 

 

Advantages and Disadvantages of Energy Management 

Key advantages include cost-effectiveness, achieved through reduced energy bills and 

operational efficiencies, and environmental benefits, such as lower greenhouse gas 

emissions and reduced resource depletion (Zhao. B., 2021). Technologies like EMS, smart 

grids, and energy storage systems enable organizations to meet regulatory requirements 

and contribute to sustainable development. However, challenges include high initial costs 

for implementation, maintenance, and training, as well as complexities in data 

management and infrastructure upgrades (Zhao. B., 2021). The environmental impact of 

manufacturing energy storage systems and the need for sustainable materials are also 

noted as concerns, requiring further research to address these limitations (Zhao. B., et al. 

2021) 

 

Differential evolution Algorithm 

Differential evolution is a simple, meta-heuristic, and effective, optimization-based 

algorithm on population which aims to solve continuous optimization problems. Storn and 

Price first introduced DE in 1995. DE is famous for its ease of use reliability and 

effectiveness in solving intricate issues with several optimum points. DE evolves a 

population of candidate solutions through three main operators: mutation, cross over, and 

selection. DE has been the focus of intensive research with numerous studies focused on 

its theoretical foundations It is a branch of evolutionary programming; it was proposed by 

Rainer Storm and Kenneth Price in 1997 for optimization problems (Hasan. M., et 

al.2021).  

 

Key Operations in Differential Evolution Algorithms 

1. Initialization 

2. Mutation 

3. Recombination 

4. Selection 
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Figure 1: A Block Diagram Showing the Key Operations in Differential Evolution 

Algorithm 

 

Initialization 

The beginning step of the differential evolution algorithm is foundational in setting up 

the rest of the algorithm. In the initialization phase, we have vectors which are list of 

numbers corresponding to potential solutions to the problem.  

Steps In Initialization 

i. Determine a population size: A specific number of starting vectors can be selected each 

vector is composed of a unique set of numbers that denote possible solutions (e.g.: 

NP=20). 

ii. Limit: Both the upper limit and the lower limit exists. These boundaries are known 

as search places. 

iii. Pick Random Vector: For each of the twenty vectors the algorithm randomly generates 

values using its random number generator ensuring selections are spread across the 

designated range 

iv. Create Population Size : Upon selecting random values for all twenty vectors you now 

have a population (a collection of 20 Vectors). 

𝑋 = {𝑋1,𝑋2,……𝑋𝑁𝑃,} 

 

Mutation 

In Differential evolution (DE) each individual in the population gets its own unique 

mutant vector, often referred to as the target vector. This approach set DE apart from 

traditional evolutionary algorithms which typically rely on small, random tweaks for 

mutation. Instead, DE’s mutation process is driven by the differences between vectors, 

giving it a distinctive edge when it comes to continuous optimization. 

Steps For Mutation 

For every target vector Xi, G in the population at generation G, we create Vi, G using a 

mutation strategy. The most widely used strategy, known as DE/rand/1, operates in the 

folly way; 

 

Vi, G = Xr1,G+ F.(Xr2,G – Xr3,G) 

INITIALI

SATION 
MUTATION 

RECOMBI

NATION 
SELECTION 
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Xr1, G, Xr2, G, Xr3, G : These are three unique vectors picked at random from the current 

population ensuring they differ from target vector Xri,G . 

F: This is the scaling factor (usually∈ [0,2] , often around 0.5-1), which helps determine 

how much perturbation will affect the outcome. 

Xr2, G– Xr3,G : The represent the difference vector, which illustrates both direction and 

distance between two random solutions. 

Vi G, The mutant vector is formed by adding the scaled difference to the base vector Xr1,G 

 

Recombination 

In the Differential Evolution (de) algorithm, recombination referred to as crossover plays 

a crucial role after mutation. It’s the process where we create a trial vector by blending 

the mutant vector produced during the mutation phase which is essentially a member of 

the current population. 

Recombination takes element from the mutant vector (Vi, G) and blends them with the 

target vector  

(Xi, G) to produce a trial vector (Ui, G) (for each individual in the population during 

Generation G. This process strikes a balance between the exploration brought on by 

mutation and retention of beneficial traits from the target vector. C. 

 

Selection 

Selection is the crucial final steps in each generation, deciding which candidate solutions 

get to move onto to the next round. This process comes after mutation and recombination 

(phases) ensuring that the population is always evolving towards the better solutions. 

Selections in DE operates like a competitive process where the trial vector (Ui,G)  created 

through mutation and recombination are compared against the target vector (Xi,G) from 

the current population at generation G. 

 

Application of Differential Evolution Algorithms to Optimization and Energy 

Management 

DE, as brought forth by Storn and Price (1997), is particularly well suited for continuous 

optimization problems, which are common in optimization tasks and energy management. 

These strengths include the following: 

 

Application to Optimization 

i. Non-Linear and Multi-Modal Problems: DE's non-differentiable, multi-modal 

objective function optimization capability stems from its stochastic search technique 

exploitation via hit-and-run mutation, crossover, and selection processes. Opara and 

Arabas (2018) observed that DE is capable of exploring several loci of multiple optima 

owing to its ability to maintain population diversity with mutation strategy DE/rand/1 

or DE/best/1 and thus, tackle problems where traditional methods based on gradients 

become inoperative. 
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ii. Global Search Ability: The analyses done in Opara and Arabas (2018) report DE as 

capable of both exploration and exploitation neutral equilibrium emphasis. 

iii. Insensitivity and Multifaceted Nature: DE demands few other constraints than that 

of differentiability or continuity to the problem being optimized, making DE easier 

possess fewer tuning factors than problem NP, F, and CR. Even though each task 

might require different problem simplifications. 

 

Applications in Energy Management   

Energy management encompasses the intricacies of optimizing systems like energy 

distribution, integrating renewable resources, and scheduling with an emphasis on 

energy efficiency. Most of these systems exhibit non-linear, constrained, and dynamic 

optimization. It can be said that DE’s characteristics are particularly helpful in these 

domains:   

i. Integration of Renewable Energy: DE is widely used for parameter optimization of 

wind turbines, solar panels, and energy storage systems in renewable energy systems. 

Dynamic environments characterized by fluctuating renewable energies require 

nimble adaptation from algorithms. Opara and Arabas (2018) provide theoretical 

analyses indicating DE mutation strategies like DE/current-to-best/1 to be effective 

in such scenarios.   

ii. Energy-Efficient Scheduling: DE also finds its application in energy management for 

task scheduling in smart grids or industrial systems with a goal to curb energy 

consumption. 

 

EMPERICAL REVIEW 

Numerous researchers have developed several optimization models to solve the energy 

management problem in SG specially related to smart home. In, Elham & Shahram, 2015 

an automatic and optimal residential energy consumption scheduling technique is 

proposed as mixed integer NLP that aims to minimize the overall Cost of electricity and 

natural gas in a building. The scheduling of electrical and thermal appliances has been 

reached, but it did not consider the wind system generation and V2G, which play an 

essential role in smart home, because V2G can be used to store the energy and generate 

it back later when needed. In Chen et al., 2011, a smart energy management system is 

proposed to coordinate the power production of distributed generation sources and energy 

storage system for a micro grid, where obtained forecasting model was able to predict 

hourly power generation, with the missing of integrating of EVs in the model where their 

charging and discharging process have an important impact and affect the results. In this 

paper, we present a differential evolution algorithm to optimize the energy production 

and consumption systems in a smart office with an effective deployment of several DERs, 

such as the integration of renewable energy production (solar) and battery storage 

systems as a DG (distributed generation). Different case studies are introduced by varying 

significant factors through the design of experiments with modulation of the various 

energy source. After that, a proposed is used to solve the problem of commercial (office) 

http://www.harvardpublications.com/


 
HARVARD INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & 

TECHNOLOGY  (VOL. 9 NO. 5) SEPTEMBER, 2025 EDITIONS 
 

 

E-ISSN 3027-0480  

P- ISSN 3027-2750                                   www.harvardpublications.com 
 9 

energy management by finding the global optimum solution for different scenario with 

significant reduction of execution time of the scenarios. 

 

METHODOLOGY 

In this section, we present the methodology for the research objectives (a single objective 

optimization algorithm is applied on a typical smart office to minimize Energy cost. The 

building considered in this research, comprises of PV panels and Battery energy storage 

system(𝐵𝐸𝑆𝑆), as shown in Fig.1. It is also connected to the upstream grid for 

selling/purchasing energy when there is energy excess/shortage respectively. This 

research considers only one type of demand: electrical demand associated with lighting 

and other home appliances plus energy prosumer system (Battery storage system). It is 

also assumed that the building is equipped with smart meter, which provides all the 

required information. Evaluating the proposed strategy, three scenarios are considered: 

the smart office flexible and non-flexible loads supplied by the conventional power grid, 

the smart office electrical loads supplied by conventional power grid plus 𝑃𝑉 and finally, 

the smart office incorporating National grid, 𝑃𝑉 and 𝐵𝐸𝑆𝑆 for its electrical loads. The 

scheduling horizon is 24 hours with time intervals of 1 hour. Mathematical models of each 

system component, energy balances and efficiency constraints will be proposed in an 

optimization framework, as the following. The ultimate goal is to investigate the impact 

of battery energy in the mentioned hybrid system on cost reduction and energy saving 

strategies. The mathematical explanations of the utilized units, sources and the 

optimization problem are shown below. 

 

PROBLEM FORMULATION 

The energy management problem is modeled as a Differential Evolutionary algorithm 

(𝐷𝐸) along the horizon 𝑇 with 𝑡 time steps. The time slot is considered1ℎ; thus, each day 

will be 24 slots. 

 

Objective Function 

The objective function model of the adopted system is formulated as follows: 

𝑚𝑖𝑛 𝑓 (𝑐𝑜𝑠 𝑡) = ∑ {(𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) × 𝜋(𝑡) − 𝑃𝑔𝑟𝑖𝑑

𝑒𝑥 (𝑡) × 𝐶𝑠𝑒𝑙𝑙(𝑡) + 𝑃𝑃𝑉(𝑡) × 𝐶𝑃𝑉 + 𝑃𝐵
𝐷𝑖𝑠𝑐ℎ(𝑡) × 𝐶𝐵

𝐷𝑖𝑠𝑐ℎ}24
𝑡=1    

           (7)         

 

Where𝜋(𝑡) ≡ 𝑇𝑂𝑈(𝑡) refers to market time-of-use tariff at hour t ($/KWh), 𝑃𝑃𝑉(𝑡) is power 

generated by the PVunit in period t; 𝐶𝑃𝑉 is the maintenance generation costs of PV system. 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡)represents the purchased electric power from the traditional grid in periodt, and 

𝑃𝑔𝑟𝑖𝑑
𝑒𝑥 ( 𝑡) is sold electric power to the conventional grid in period t. 𝐶𝑠𝑒𝑙𝑙 denotes electricity 

cost when it is sold to the grid; 𝐶𝐵
𝐷𝑖𝑠𝑐ℎstands for maintenance cost of battery storage, 

𝑃𝐵
𝐷𝑖𝑠𝑐ℎ(𝑡) is the discharge power of battery storage in time t. 
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Figure 1: Proposed System Architecture 

 

Power Balance Equality Constraint 

In a smart office, ensuring a balance between energy production and consumption is 

critical. The power balance equality constraint of the smart office is given by eq. (8). The 

power balance equality constraint ensures that at any given time t, the total power 

provided by the traditional grid,𝑃𝑉unit , and battery energy storage equals the total power 

demand by the smart office load (flexible and non-flexible)  and any excess power sold 

back to the traditional grid. This balance is crucial for optimizing (minimizing) the energy 

management within the smart office and maintaining operational efficiency and 

reliability of the hybrid energy system. 

 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) + 𝑃𝑃𝑉(𝑡) + 𝑃𝐵

𝐷𝑖𝑠𝑐ℎ(𝑡) = 𝑃𝐷
𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝐵

𝐶ℎ(𝑡) + 𝑃𝑔𝑟𝑖𝑑
𝑒𝑥 (𝑡)                                   (8) 

 

It is noteworthy that the positive values for 𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡)are considered as the power purchased 

from the grid and the negative values as the power sold to the grid. 𝑃𝐷
𝑙𝑜𝑎𝑑( 𝑡) designs the 

entire smart office load demand in period t.𝑃𝑔𝑟𝑖𝑑
𝑒𝑥 (𝑡) denotes the electricity amount sold to 

the grid in period t, 𝑃𝐵
𝐶ℎ(𝑡) represents the charge power by battery energy storage device 

in period t. 

 

Heat Balance Equality Constraint 

The heat balance equality constraint in the smart office for the three scenarios discussed 

in this paper is non-existent. This is due to the fact that the distributed energy resources 

examined in this research, along with the upstream grid for energy exchange during 

surplus or deficit conditions, are unable to produce heat for the smart office. In summary, 

the single objective constrained optimization problem of interest in the smart office can 

be summarized as follows: 
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Minimizef(cost) = {∑ {(𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡)𝜋(𝑡) − 𝑃𝑔𝑟𝑖𝑑

𝑒𝑥 (𝑡)𝐶𝑠𝑒𝑙𝑙(𝑡)) + 𝑃𝑃𝑉(𝑡)𝐶𝑃𝑉 +
24
𝑡=1

𝑃𝐵
𝐷𝑖𝑠𝑐ℎ(𝑡)𝐶𝐵

𝐷𝑖𝑠𝑐ℎ} , 𝜋(𝑡) ≡ 𝑇𝑂𝑈(𝑡)         (9) 

Subject to relevant constraints 

0 ≤ 𝑃𝑔𝑟𝑖𝑑(𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑
𝑖𝑚𝑚𝑎𝑥                                                                                                (10) 

0 ≤ 𝑃𝑔𝑟𝑖𝑑
𝑒𝑥 (𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑

𝑒𝑥𝑚𝑎𝑥                                                                                                                          (11)  

0 ≤ 𝑃𝑝𝑣(𝑡) ≤ 𝑃𝑝𝑣
max                                                                                                                                                                                      (12  

𝑃𝐵
𝑑𝑖𝑠𝑐ℎ(𝑡) ≤ 𝑃𝐵

𝑑𝑖𝑠𝑐ℎ𝑚𝑎𝑥(𝑡)
                                                                                               (13)                          

 

For ease of computation and coding into PYTHON, we introduce the following variables; 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) = 𝑥1,𝑡, 𝑃𝑔𝑟𝑖𝑑

𝑒𝑥 (𝑡) = 𝑥2,𝑡𝑃𝑃𝑉(𝑡) = 𝑥3,𝑡, 𝑃𝐵
𝐷𝑖𝑠𝑐ℎ(𝑡) = 𝑥4,𝑡,  𝜋(𝑡) = 𝜋𝑡 

𝐶𝑃𝑉 = 𝑐1, 𝐶𝐵
𝐷𝑖𝑠𝑐ℎ = 𝑐2,   𝐶𝑠𝑒𝑙𝑙 = 𝑐3. 

 

The smart office single-objective constrained optimization problem is then equivalent to 

Minimizef(cost) = {∑ {(𝑥1,𝑡𝜋𝑡 − 𝑥2,𝑡𝑐3) + 𝑥3,𝑡𝑐1 + 𝑥4,𝑡𝑐2}
24
𝑡=1                                               (14)        

In expanded form we have;  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓(𝑐𝑜𝑠 𝑡) = ∑ {(𝑥1,𝑡𝜋𝑡 − 𝑥2,𝑡𝑐3) + 𝑥3,𝑡𝑐1 + 𝑥4,𝑡𝑐2}
24
𝑡=1                                               (15) 

= 𝑥1,1𝜋1 + 𝑥1,2𝜋2 + 𝑥1,3𝜋3 + 𝑥1,4𝜋4 + 𝑥1,5𝜋5 + 𝑥1,6𝜋6 + 𝑥1,7𝜋7 + 𝑥1,8𝜋8 + 𝑥1,9𝜋9 + 𝑥1,10𝜋10 

+𝑥1,11𝜋1` + 𝑥1,12𝜋12 + 𝑥1,13𝜋13 + 𝑥1,14𝜋14 + 𝑥1,15𝜋15 + 𝑥1,16𝜋16 + 𝑥1,17𝜋17 + 𝑥1,18𝜋18 + 𝑥1,19𝜋19

+ 𝑥1,20𝜋20 

+𝑥1,21𝜋21` + 𝑥1,22𝜋22 + 𝑥1,23𝜋23 + 𝑥1,24𝜋24 

−(

𝑥2,1 + 𝑥2,2 + 𝑥2,3 + 𝑥2,4 + 𝑥2,5 + 𝑥2,6 + 𝑥2,7 + 𝑥2,8 + 𝑥2,9 + 𝑥2,10
+𝑥2,11 + 𝑥2,12 + 𝑥2,13 + 𝑥2,14 + 𝑥2,15 + 𝑥2,16 + 𝑥2,17 + 𝑥2,18 + 𝑥2,19 + 𝑥2,20
+𝑥2,21 + 𝑥2,22 + 𝑥2,23 + 𝑥2,24

)𝑐3 

 +(

𝑥3,1 + 𝑥3,2 + 𝑥3,3 + 𝑥3,4 + 𝑥3,5 + 𝑥3,6 + 𝑥3,7 + 𝑥3,8 + 𝑥3,9 + 𝑥3,10
+𝑥3,11 + 𝑥3,12 + 𝑥3,13 + 𝑥3,14 + 𝑥3,15 + 𝑥3,16 + 𝑥3,17 + 𝑥3,18 + 𝑥3,19 + 𝑥3,20
+𝑥3,21 + 𝑥3,22 + 𝑥3,23 + 𝑥3,24

)𝑐1 

 +(

𝑥4,1 + 𝑥4,2 + 𝑥4,3 + 𝑥4,4 + 𝑥4,5 + 𝑥4,6 + 𝑥4,7 + 𝑥4,8 + 𝑥4,9 + 𝑥4,10
+𝑥4,11 + 𝑥4,12 + 𝑥4,13 + 𝑥4,14 + 𝑥4,15 + 𝑥4,16 + 𝑥4,17 + 𝑥4,18 + 𝑥4,19 + 𝑥4,20
+𝑥4,21 + 𝑥4,22 + 𝑥4,23 + 𝑥4,24

)𝑐2          (16) 

 

The relevant constraints become; 

{
 
 

 
 0 ≤ 𝑥1,𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑

𝑖𝑚𝑚𝑎𝑥

0 ≤ 𝑥2,𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑
𝑒𝑥𝑚𝑎𝑥

0 ≤ 𝑥3,𝑡 ≤ 𝑃𝑝𝑣
𝑚𝑎𝑥

𝑥4,𝑡 ≤ 𝑃𝐵𝐸𝑆𝑆
𝐷𝑖𝑠𝑐ℎ𝑚𝑎𝑥{

                                                       (17)                                                                                                                            

 

The data set for the above optimization problem is as follows; 

𝑐1 = 0.05, 𝑐2 = 0.05,  𝑐3 = 0.80 

𝑃
𝑔𝑟𝑖𝑑

𝑖𝑚𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

𝑒𝑥𝑚𝑎𝑥 𝑝𝑣
𝑚𝑎𝑥 𝐵

𝑑𝑖𝑠𝑐ℎ𝑚𝑎𝑥(𝑡)
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in period𝒕.                     

 

Modeling of Power grid 

The electricity power injected from the National grid network during the period𝑡is 

determined by the amount of gas/coal consumed by the National grid𝑃𝑔𝑟𝑖𝑑(𝐾𝑊)and can be 

expressed as: 

 

𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) = 𝑃𝐷

𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝐵
𝑐ℎ(𝑡)                                                                                                     (18)                                       

 

The imported electric power from the external grid network 𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) is directly utilized to 

fulfill the electrical demand of curtailable, flexible and non-flexible loads in the smart 

office in period𝑡. 

 

Power grid constraint: 

The quantity of imported electric power from the main grid is constrained by its branch 

rating or electricity market regulations:                       

 

0 ≤ 𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑

𝑖𝑚𝑚𝑎𝑥(𝑡)
                                                                                                      (19)                                                                                    

 

Where 𝑃𝑔𝑟𝑖𝑑
𝑖𝑚 (𝑡) designs the imported electric power from the main grid in𝑡;𝑃𝑔𝑟𝑖𝑑

𝑖𝑚𝑚𝑎𝑥(𝑡)
 is 

designed to meet the maximum imported power from the main gird in𝑡. The quantity of 

electric power sold to the main grid is restricted by its branch rating or regulations within 

the electricity market:  

 

0 ≤ 𝑃𝑔𝑟𝑖𝑑
𝑒𝑥 (𝑡) ≤ 𝑃𝑔𝑟𝑖𝑑

𝑒𝑥𝑚𝑎𝑥(𝑡)
                                                                                                        (20)                                                                        

 

Where 𝑃𝑔𝑟𝑖𝑑
𝑒𝑥𝑚𝑎𝑥(𝑡)

 is the maximum power exported to the main gird in t and 𝑃𝑔𝑟𝑖𝑑
𝑒𝑥 (𝑡) designs 

exported electric power to the main grid in t. It is evident that importing/selling electrical 

energy (𝐸𝑖𝑚𝑝/𝐸𝑒𝑥𝑝) from / to the upstream main grid at the same time is not achievable. 

Consequently, the following inequality constraints for the grid must be satisfied: 

 

𝐸𝑖𝑚𝑝(𝑡) + 𝐸(𝑡)𝑒𝑥𝑝                                                                                                                    (21)        

 

Modeling of Photovoltaic System: 

The limit of the amount of 𝑃𝑉 generation. 

 

max0 (t) P ( ).PV PVP t                                                                                                                     (22) 

 

The output power generated from 𝑃𝑉 system 
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𝑃𝑃𝑉(𝑡) ≤ 𝐴 × 𝜌 × 𝑆𝐼(𝑡).                                                                                                           (23) 

 

Where 𝑃𝑃𝑉
𝑚𝑎𝑥 is the maximum 𝑃𝑉 power allowed in period𝑡, 𝐴 is the 𝑃𝑉system area, 𝜌 is the 

efficiency, and 𝑆𝐼(𝑡) is the solar irradiation 

 

Modeling of Battery Storage System 

The charging power of the battery storage system is limited by the maximum charging 

rate of the converter that links the battery storage system to the micro-grid. The boundary 

for the allowed charging power is: 

 

𝑃𝐵
𝑐ℎ(𝑡) ≤ 𝑃𝐵

𝑐ℎ𝑚𝑎𝑥(𝑡)
                                                                                                                     (24) 

 

The discharge power of the battery energy storage system is constrained by the maximum 

discharging rate of the converter that connects the battery energy storage system to the 

micro-grid. The limit for allowable discharging power is: 

 

𝑃𝐵
𝑑𝑖𝑠𝑐ℎ(𝑡) ≤ 𝑃𝐵

𝑑𝑖𝑠𝑐ℎ𝑚𝑎𝑥(𝑡)
                                                                                                             (25) 

 

Simultaneous charging and discharging are prohibited. 

 

𝑌(𝑡) + 𝑍(𝑡) ≤ 1                                                                                                                        (26) 

 

Where 𝑌(𝑡) represents the state of the battery at 𝑡 (= 1 charging; = 0 otherwise); 𝑍(𝑡) 

represents the state of the battery at t (= 1 discharging; = 0 otherwise). 

The electricity stored in the battery is represented as: 𝑡 > 1: 

 

𝑁𝑜𝑚𝐵 × 𝑆𝑂𝐶𝐵(𝑡) = 𝑁𝑜𝑚𝐵 × 𝑆𝑂𝐶𝐵(𝑡 − 1) + (
𝑃𝐵
𝑐ℎ(𝑡)×𝑑𝑡

𝑒𝑐
− 𝑒𝑑 × 𝑃𝐵

𝐷𝑖𝑠𝑐ℎ(𝑡) × 𝑑𝑡)                   (27) 

 

The initial state of the battery: 

 

𝑁𝑜𝑚𝐵 × 𝑆𝑂𝐶𝐵(1) = 𝑁𝑜𝑚𝐵

𝑖𝑛𝑖𝑡(
𝑃𝐵
𝑐ℎ(1)×𝑑𝑡

𝑒𝑐
−𝑒𝑑×𝑃𝐵

𝐷𝑖𝑠𝑐ℎ(1)×𝑑𝑡)

                                                    (28) 

 

The limit of the state of charge of the battery: 

 

𝑆𝑂𝐶𝐵
𝑚𝑖𝑛𝐵                                                                                                                                      (29) 

 

The maximum battery charge limit: 

𝑃𝐵
𝑐ℎ(𝑡)×𝑑𝑡

𝑒𝑐𝐵𝐵𝐵

                                                                                                                                        (30) 
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Where 𝑃𝐵
𝑐ℎ(𝑡)  and 𝑃𝐵

𝐷𝑖𝑠𝑐ℎ(𝑡) denote the charge and discharge power by the battery storage 

at t.𝑃𝐵
𝐶𝑚𝑎𝑥 and 𝑃𝐵

𝐷𝑚𝑎𝑥represent the maximum allowable power for charging and discharging 

the battery, respectively; 𝑁𝑜𝑚𝐵stands for  the battery nominal capacity; 𝑆𝑂𝐶𝐵(𝑡) 

constitutes  the state of charge of the battery; 𝑒𝑐 and 𝑒𝑑 makes up the charging and 

discharging coefficient factor; 𝑁𝑜𝑚𝐵
𝑖𝑛𝑖𝑡constitutes the initial battery capacity and 𝑆𝑂𝐶𝐵

𝑚𝑖𝑛is 

the minimum state of charge of battery storage. 

 

Modeling of Solving Optimization and Energy Management Problem in Building 

Considering PV with Integration of Battery Storage System Using the 

Differential Evolution Algorithm 

Power output and of the generating 𝑃𝑉 units, electric power sold/purchased from the 

traditional grid, 𝐵𝐸𝑆𝑆 operation which involves three interrelated sets (𝑃𝐵
𝐷𝑖𝑠𝑐ℎ(𝑡), 𝑃𝐵

𝐶ℎ(𝑡) 

and 𝑆𝑂𝐶𝐵 in the problem, are decision/control variables. Originally, differential evolution 

algorithm is a simple population-based evolutionary computational algorithm for global 

optimization. Not only is it considered one of the most accurate, but of course one of the 

fastest meta-heuristic algorithms introduced in 1995 by Price and Storn (Storn & Price, 

1997). This section provides the solution methodology to the energy management 

problems through differential evolution algorithm (𝐷𝐸). 

 

Parameter Setup 
The parameter set up mandates the user topic key parameters that control the differential 

evolution— population size (L); boundary constraints of optimization variables (NG); 

mutation factor (𝑓
𝑚

), crossover rate (CR); and the stopping criterion of maximum number 

of iterations (generations) 𝑡𝑚𝑎𝑥. This approach ensures each solution is seen as capable of 

playing the vector role. Therefore, each solution f should contain these items as 

follows:𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑓 = [𝑃𝑖,1, … , 𝑃𝑖,𝑁𝑝, 𝑃𝑖,𝑁𝑝+1, … , 𝑃𝑖,𝑁𝑝+𝑁𝑏 , 𝐻𝑖,1, … , 𝐻𝑖,𝑁𝑏 , 𝐻𝑖,𝑁𝑏+1, … , 𝐻𝑖,𝑁𝑏+𝑁ℎ]         (31) 

 

Furthermore, 𝑃𝑖,𝑗 = [𝑃𝑖,1, 𝑃𝑖,2, … , 𝑃𝑖,𝑁𝑝]stands for the position of the 𝑗𝑡ℎ individual of a 

population of real valued 𝑁𝑝-dimensional vectors. 

 

Initialization 

The initial population encompasses combinations of solely the candidate dispatch 

solutions, which do not limit themselves to satisfying all the constraints alone, but are 

feasible solutions of economic dispatch. The element of a parent is the combination of 

power outputs of the generating units arbitrarily selected by a random number ranging 

over[𝑃𝑖
𝑚𝑖𝑛𝑖

𝑚𝑎𝑥

]. 

𝑃𝑖𝑗
𝑡 = 𝑃

𝑖𝑗

𝑚𝑖𝑛( )(𝑃𝑖
𝑚𝑎𝑥𝑖

𝑚𝑖𝑛

(𝑖=1,2,…,𝑁𝐺,𝑖≠𝑑,𝑗=1,2,…,𝐿))

                                                                     (32) 

 

Where 𝑟𝑎𝑛𝑑( )is uniform random number ranging over [0, 1]. 
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𝐻𝑖𝑗
𝑡 = 𝐻

𝑖𝑗

𝑚𝑖𝑛( )(𝐻𝑖
𝑚𝑎𝑥𝑖

𝑚𝑖𝑛

(𝑖=1,2,…,𝑁𝐺,𝑖≠𝑑,𝑗=1,2,…,𝐿))

                                                                    (33) 

Also, the element of a parent is the combination of heat outputs of the generating units 

chosen arbitrarily by a random number ranging over [𝐻𝑖
𝑚𝑖𝑛𝑖

𝑚𝑎𝑥

] (Hasan. M., et al.2021) 

 

Evaluation 

Minimizing the operating cost function is the goal here. When penalty factors are 

calculated, objective function— cost function— is evaluated. After evaluation of objective 

function, a global best solution is determined (𝑓
𝑏𝑒𝑠𝑡,𝑖

). 

 

Mutation Operation (Differential Operation) 

Mutation is an operation that adds a vector differential to a population vector of 

individuals according to the following equation: 

𝐴𝑖𝑗
𝑡 = 𝑃𝑅1𝑗

𝑡 + 𝑓
𝑚
(𝑃𝑅2𝑗

𝑡 − 𝑃𝑅3𝑗
𝑡 )(𝑖 = 1,2, … , 𝑁𝐺, 𝑖 ≠ 𝑑, 𝑗 = 1,2, … , 𝐿)

                                   (34) 

Where T is the time (generation), 1 2, , ,t t t t T

i i i iNGP P P P =    designs the position of the 

𝑗𝑡ℎindividual of a population of real valued NG-dimensional vectors.

1 2, , ,t t t t T

i i i iNGA A A A =   is the position of the 𝑗𝑡ℎindividual of a mutant vector. 𝑅1, 𝑅2 and 

𝑅3 are mutually different integers that are also different from the running index i;𝑓
𝑚

 is 

the mutation factor; and 𝑓
𝑚
> 0 is an actual parameter controlling the amplification of 

the difference between two individuals with indexes 𝑅2 and 𝑅3(𝑗)in a bid to avoid search 

stagnation. It is usually a constant value taken from the range [0.4,1]. After the heat 

population is initialized, the mutation operator creates the next population. 

𝐶𝑖𝑗
𝑡 = 𝐻𝑅1𝑗

𝑡 + 𝑓
𝑚
(𝐻𝑅2𝑗

𝑡 − 𝐻𝑅3𝑗
𝑡 )(𝑖 = 1,2, … , 𝑁𝐺, 𝑖 ≠ 𝑑, 𝑗 = 1,2, … , 𝐿)

                                                    (35) 

 

1 2, , ,t t t t T

i i i iNGH H H H =    stands for the position of the 𝑗𝑡ℎindividual of a population of 

real valued NG-dimensional vectors. 1 2, , ,t t t t T

i i i iNGC C C C =    stands for the position of 

the 𝑗𝑡ℎindividual of a mutant vector. 𝑅1, 𝑅2and 𝑅3 are mutually different integers (Perez & 

Maldonado, 2005). 

 

Recombination 

Following the mutation operation, recombination is applied to the population to generate 

a trial vector through replacement certain parameters of the target vector. This is carried 

out by the corresponding parameters of a randomly generated donor vector. For each 

vector𝐴𝑖
𝑡+1  and 𝐶𝑖

𝑡+1an index 𝑅5(𝑖)are randomly chosen using a uniform distribution and 

a trial vector  
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1 1 1 1

1 2, , ,t t t t T

i i i iNGB B B B+ + + + =   and 
1 1 1 1

1 2, , ,t t t t T

i i i iNGD D D D+ + + + =    respectively. 

𝐵𝑖
𝑡+1 = {

𝐴𝑖𝑗
𝑡   if   (𝑅4(𝑗) ≤ 𝐶𝑅) or (𝑗 = 𝑅5(𝑖))

𝑃𝑖𝑗
𝑡   if   (𝑅4(𝑗) ≤ 𝐶𝑅) or (𝑗 ≠ 𝑅5(𝑖))

(𝑖 = 1,2, … , 𝑁𝐺, 𝑖 ≠ 𝑑, 𝑗 = 1,2, … , 𝐿)

  (36) 

𝐷𝑖
𝑡+1 = {

𝐶𝑖𝑗
𝑡   if   (𝑅4(𝑗) ≤ 𝐶𝑅) or (𝑗 = 𝑅5(𝑖))

𝐻𝑖𝑗
𝑡   if   (𝑅4(𝑗) ≤ 𝐶𝑅) or (𝑗 ≠ 𝑅5(𝑖))

(𝑖 = 1,2, … , 𝑁𝐺, 𝑖 ≠ 𝑑, 𝑗 = 1,2, … , 𝐿)

     (37)

 

 

Where𝑅4(𝑗)is the 𝑗𝑡ℎ evaluation of a uniform random number generation with [0,1]. CR is 

the crossover or recombination rate in the rate in the range [0,1]. Usually the performance 

of a DE algorithm depends on the three variables; the population size, the mutation 

factor 𝑓
𝑚

 and the CR (Hasan. M., et al.2021) 

 

Selection Operation 

Selection procedure oversees the production of better offspring. To decide the plausibility 

of vector 𝐵𝑖
𝑡+1 as a member of the population of the next generation, it is compared with 

the corresponding vector 𝑃𝑖𝑗
𝑡 . Thus, f denotes the cost function under minimization, then 

𝑃𝑖𝑗
𝑡+1 = {

𝐵𝑖𝑗
𝑡+1,   (𝑗 = 1,2, … , 𝑁𝐺);  𝑓(𝐵𝑖

𝑡+1) < 𝑓(𝑃𝑖
𝑡)

𝑃𝑖𝑗
𝑡 ,     (𝑗 = 1,2, … , 𝑁𝐺); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝑖 = 1,2, … , 𝑁𝐺)

                                                  (38)

 

 

𝐻𝑖𝑗
𝑡+1 = {

𝐷𝑖𝑗
𝑡+1,   (𝑗 = 1,2, … , 𝑁𝐺);  𝑓(𝐷𝑖

𝑡+1) < 𝑓(𝐻𝑖
𝑡)

𝐻𝑖𝑗
𝑡 ,     (𝑗 = 1,2, … , 𝑁𝐺); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝑖 = 1,2, … , 𝑁𝐺)

                                                 (39) 

 

In the case above, the cost of each of trial vector is compared with that of its parent target 

vector 𝑃𝑖
𝑡 and𝐻𝑖

𝑡. If the cost f of the target vector 𝑃𝑖
𝑡 is lower than that of the trial vector, 

the target is allowed to advance to the next generation. Otherwise, a trial vector replaces 

the target vector in the next generation (Chen. H. et al, 2022). 

 

Verification of The Stopping Criterion 

Set the generation number for𝑡 = 𝑡 + 1. Then repeat mutation, recombination and 

selection operation until the stop criterion— usually a maximum number of iterations 

(generations)𝑡𝑚𝑎𝑥— is met. The stop criterion depends on the type of problem (Elkazaz.M. 

F, et al, 2020). 

 

Optimization Steps 

The CHPED problem is solved by DE algorithm through the seven steps proposed below: 

Step 1: initialize solutions randomly; 

Step 2: penalize infeasible solutions; 

Step 3: evaluate solutions and determine global best solution; 
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Step 4: create newer solutions; 

Step 5: constraint-handle and penalize infeasible solutions; 

Step 6: evaluate solutions, select and determine global best solution; 

Step 7: if convergence criteria is satisfied, then exit, otherwise go to step 4. 

 We begin with the Pseudocode for the differential evolution Algorithm 

1. Input: Fitness function, Lb, Ub, Np, T, F 

2. Evaluate fitness ( f ) of P 

fort = 1 to T 

for i = 1 to Np 

             Generate the donor vector (Vi) using mutation 

             Perform crossover to generate offspring (Ui) 

end 

fori = 1 to Np 

BoundUi 

Evaluate fitness (fUi) of  Ui 

               Perform greedy selection using fUi and fi to update P 

end 

 

 

Figure 2: Computational flow of DE. 
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SIMULATION RESULTS 

Based on the flow chart/formulas illustrated above. The sub-routines are found in 

Appendix A1. The studied smart office can meet its energy consumption (load or/and 

charging battery storage) from the main power grid or/and the 𝑷𝑽 system and the battery 

storage (discharge mode). If there is a power surplus from all these systems, the exceeding 

energy can be sold to the grid (this research allows the  

 

Figure 3: Load Demand in the smart office. 

buy/store/sell operation of the electrical power) 

 

The electricity demand data for the smart office is sourced from (Hasan. M., et 

al.2021).The electricity demand of the smart office is illustrated in Fig. 3. During specific 

periods, flexible and non-flexible loads (such as TV, sensors, AC, Laptop, cell-phone 

Illumination, 𝐵𝐸𝑆𝑆 etc.) solely draw electricity. However, 24 hours horizon according to 

the graph profile of Fig.2, both flexible and non-flexible loads, along with the battery 

energy storage device, draw electricity from the hybrid-energy system. 

 

Table I: Time of use Tariff  

t 

$/KWh 

1 

0.033 

2 

0.027 

3 

0.020 

4 

0.017 

5 

0.017 

6 

0.029 

t 

$/KWh 

7 

0.033 

8 

0.054 

9 

0.215 

10 

0.572 

11 

0.572 

12 

0.572 

t 

$/KWh 

13 

0.215 

14 

0.572 

15 

0.286 

16 

0.279 

17 

0.086 

18 

0.059 

t 

$ /KWh 

19 

0.050 

20 

0.061 

21 

0.181 

22 

0.077 

23 

0.043 

24 

0.037 

 

In order to minimize the daily operational cost of the hybrid-energy system along with the 

consideration of PV energy stochasticity, the hybrid-energy system concept is propounded 

by using Differential evolution algorithm. The devised hybrid-energy system management 

model is tested in PYTHON environment to solve for the optimal energy cost of load 

0
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(flexible and non-flexible) in the office considering the three scenarios. It is important to 

indicate that power flow equations, loss functions, reactive power flow and losses are 

beyond the scope of our study. The stochasticity is not considered for the other input data 

(such as demand) excluding 𝑃𝑉 unit. From the other perspective, the sizing and 

investment-based economic analyses of 𝑃𝑉 unit is not in the scope of our research. Input 

data considered and related results to different cases will be detailed in the following 

subsections. 

 

Table II: Parameters Estimates   

Parameter Value Unit 

𝑷𝒈𝒓𝒊𝒅
𝒊𝒎𝒎𝒂𝒙, 𝑷𝒈𝒓𝒊𝒅

𝒆𝒙𝒎𝒂𝒙 5,0.6 KW 

𝑪𝑷𝑽(𝒕) = 𝑪𝑩
𝑫𝒊𝒔𝒄𝒉 0.05 $/KWh 

𝑪𝒆𝒍𝒆𝒄,𝒔𝒆𝒍𝒍 0.80 $ /KWh 

𝑷𝑩
𝑫𝒊𝒔𝒄𝒉(𝒕), 𝑷𝑩

𝒄𝒉(𝒕) 1 KW 

𝑷𝒑𝒗(𝒕), 𝑨, 𝜼 3,164,97 KW, m2, % 

𝑺𝑶𝑪𝑩𝒎𝒊𝒏𝑺𝑶𝑪𝑩𝒎𝒂𝒙 0.2,1 pu 

𝜼
𝒄𝒉,
𝜼
𝒅𝒄𝒉
, 𝑷𝑩(𝒕) 97,97,3.8 %, KW 

𝑷𝑫
𝒍𝒐𝒂𝒅(𝒕) 8 KW 

 

INPUT DATA 

 In this research, real input data are taken into account for each unit in order to provide 

more realistic results. A real electricity price considering a 𝑇𝑜𝑈 tariff is used as energy 

price. The electricity consumption of a smart office is used for the demand. The stochastic 

solar energy generation is used to for renewable energy generation. As for renewable 

energy sources, the 3.0 kW 𝑃𝑉 installed system has a total area of 164𝑚2 and an efficiency 

of97%. The battery storage device has a capacity of 3.8𝑘𝑊ℎ, with an initial SOC of 3.0𝑘𝑊ℎ 

and a minimum SOC of1.5𝑘𝑊ℎ. It charges and discharges at a rate of1.0𝑘𝑊, with an 

efficiency of  97%. This setup ensures that the battery can store surplus energy from the 

renewable sources and supply it during periods of high demand or low generation. Finally, 

the maximum power generated from the grid during period 𝑡 is chosen to be 5 kW. 

𝐶𝑃𝑉(𝑡), 𝑎𝑛𝑑 𝐶𝐵
𝐷𝑖𝑠𝑐ℎ (𝑡) are set at 0.05 $ /KWh as maintenance cost. The cost of the electricity 

sold to the national grid is 0.80 $ /KWh and the cost of generated power by the grid is 

determined in 𝑇𝑜𝑈 Table I.  

 

NUMERICAL RESULTS 

The case study is a typical university lecturer’s office. As mentioned before, PV panels 

along with grid connection is used to supply the building demands. Figure 2 shows the 

electrical demand of the office and its obtained obtained by means of embedded smart 

meters in the system. A  𝑃𝑉 with 3 kW capacity is considered and the battery capacity is 

3.8 kW, respectively. The parameters of the office components and the 𝑇𝑜𝑈 price tariffs 

are given in table II and I. The state of charge of 𝐵𝐸𝑆𝑆 is 0.2pu. The Differential evolution 
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algorithm is implemented using PYTHON 3.10 on an H.P Pavilion Laptop, 1.80 GHZ, 

Intel i7 processor, 16 GB RAM with WINDOWS 10 operating system. 

As shown in Fig. 4, in scenario I, the office primarily relies on the conventional grid system 

to supply energy to the smart office, thereby increasing system efficiency. In other words, 

greater electricity generation from conventional grid sources promotes sustainability in 

energy utilization, enhances the resilience of the hybrid, as customers rely on it to power 

their electrical appliances. However, on this selected da i.e.   0.00 a.m. to 23.00 p.m., the 

smart home draws electricity from the traditional grid due to lower electricity prices on 

this selected day due to gas price that is fixed and cheaper. Overall, the significant 

advantage of conventional grid over photovoltaic system in this scenario is its ability to 

generate energy at a reduced gas price which is fixed, reliable power supply, grid stability 

and reduced energy losses compared to 𝑃𝑉 systems that are stochastic in nature. (Hasan. 

M., et al.2021) 

 

 

Figure 4: Electricity equilibrium of the microgrid for scenario 𝐼 grid supply only 

 

Figure 5 shows the scattered obtained using the proposed Differential evolution algorithm 

in scenario𝐼. Differential evolution is utilized to tackle the single-objective optimization 

problem when a conventional grid integrated with a smart office. The population size, 

maximum number of generations, crossover probability, and mutation probability have 

been set to 50, 50, 0.9, and 0.2, respectively, for the three scenarios aiming at cost 

minimization. The results depicted in Figure 5 indicate that scenario𝐼 exhibits the highest 

cost by 92% and 89% in comparison to scenarios 𝐼𝐼and𝐼𝐼𝐼, respectively, this analysis 

demonstrates that differential evolution algorithm achieves the maximum cost 

expenditure by customers when compared with the other scenarios, attributed to its 

fluctuation. (Hasan. M., et al.2021) 

http://www.harvardpublications.com/


 
HARVARD INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & 

TECHNOLOGY  (VOL. 9 NO. 5) SEPTEMBER, 2025 EDITIONS 
 

 

E-ISSN 3027-0480  

P- ISSN 3027-2750                                   www.harvardpublications.com 
 21 

Figure 5: 

scattered plot 

generated by 

Scenario 𝐼 

 

As depicted in Fig. 

6, in scenario𝐼𝐼, the 

hybrid energy 

primarily relies on 

the photovoltaic 

energy system to 

supply energy to 

the smart office, 

thereby increasing 

system efficiency. 

In other words, 

greater electricity 

generation from 𝑃𝑉 energy sources promotes sustainability in energy utilization, 

enhances the resilience of the hybrid energy system, reduces dependence on the 

conventional grid, and enables the smart office to sell surplus energy to the upstream grid 

during peak price hours. However, between 6a.m. to 6p.m., the smart office draws 

electricity from the traditional grid due to lower electricity prices during this time interval 

and the stochastic nature of  solar energy generation. (Hasan. M., et al.2021). Overall, the 

significant advantage of the photovoltaic system over the traditional grid in this scenario 

is its ability to exchange energy with the main grid, resulting inconsiderable revenue. 

 

 

Figure 4: Electricity equilibrium of the microgrid  for scenario II  withPV and  

grid supply. 
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Figure 7 depicts the scattered plot of scenario II, showcasing the minimum fuel cost 

achieved using the proposed algorithm. The performance enhancement of this scenario 

can be observed in terms of cost, attributed to the integration of a 𝑃𝑉 generation system. 

The effectiveness of differential evolution algorithm verified using the test system, shows 

that the algorithm can find better solutions in terms of the objective function value, 

convergence speed and the number of solutions with lower objective functions compared 

with other scenarios.  

 

 

Figure 5: scattered plot generated by Scenario 𝐼𝐼 

 

 

Figure 6: Electricity equilibrium of the microgrid for scenario III  with ,PV BESS  

and grid supply  

 

This scenario suggests that the integration of a 𝑃𝑉 generation system yields positive 

effects when accompanied by appropriate energy management strategies that satisfy 

various constraints, as indicated by the scenario study. Figure 8 designs the electricity 
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balance of the hybrid energy system with a battery energy storage device integrated into 

it. It is evident that the 𝑃𝑉 and battery energy storage device operate at their maximum 

capacities for most of the hours, providing almost 75% of the total smart home energy 

consumption. This synergy between the 𝑃𝑉 and electricity storage device is advantageous, 

especially considering electricity prices in this scenario. Surplus energy is sold back to the 

grid during morning hours and late at night, as energy is stored during these off-cpeak 

periods and then exported to the main grid during peak price periods. (Raman. S.,et al., 

2020). 

This suggests that during on-peak periods, the smart office can meet its load demands by 

utilizing the battery energy storage instead of relying on purchases from the traditional 

grid. To mitigate the additional costs associated with battery degradation, the hybrid 

energy system endeavors to minimize the duration of discharging mode for the battery. 

Additionally, it is observed that during the early morning hours, the energy management 

system opts to purchase power from the upstream grid due to the low-price market 

conditions and uncertainties arising from the distributed energy resource 𝑃𝑉unit. Late in 

the night (8p.m, 9p.m, 10.p.m, 11.p.m and 12.am) the hybrid system used mixed energy 

(battery discharge and conventional grid) to supply to the office. 

Figure 9 illustrates the scattered plot of the proposed hybrid energy system for scenario 

III. It is evident that, thanks to the proposed meta-heuristic algorithm, the second-best 

solution point among all test combinations. This scenario provides a solution very close to 

the best compromise solution. Furthermore, scenario III highlights that the integration 

of an energy storage device (BESS) into the electrical grid yields positive effects when 

accompanied by appropriate energy management strategies that satisfy various 

constraints outlined in the scenario mathematical model. It is observed that during 

periods when the battery energy storage device is charging, its state of charge (SOC) is 

relatively high, and when the electricity price for discharging is lower than that from the 

upstream grid, the BESS discharges its energy, thereby benefiting from the electrical 

energy stored during off-peak period. .(Rahman. S.,et al., 2020) 

 

Figure 7: scattered 

plot generated by 

Scenario 𝐼𝐼𝐼 

 

Table 𝐼𝐼𝐼 displays the 

performances of 

different scenarios 

concerning various 

objective functions. 

Scenario 𝐼 represent the 

baseline scenario with 

the highest energy 

costs. This scenario 
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serves as a reference point for comparison. Scenario 𝐼𝐼 exhibits 90% reduction in energy 

costs compared to Scenario 𝐼. This reduction in energy costs in the scenarios indicates that 

consumers benefit financially from selling excess power to the grid after satisfying their 

own energy needs. This aspect highlights the economic advantage of integrating 

renewable energy resources in energy management system. It is evident that scenario 𝐼𝐼𝐼 

exhibits the second-best performance in terms of cost. However, the integration of BESS 

leads to higher cost when compare with scenario 𝐼. Despite this, the cost and result is 

reasonable, thus validating the effectiveness of the hybrid energy system management. 

(IEEE Transactions on Smart Grid) 

 

TABLE 𝐼𝐼𝐼. ENERGY COST OF CASE SCENARIOS. 

SCENARIOS ENERGY COST ($ /Day) 

𝑰(𝑮𝑹𝑰𝑫) 3.812 

𝑰𝑰(𝑮𝑹𝑰𝑫&𝑷𝑽) 0.301 

𝑰𝑰(𝑮𝑹𝑰𝑫, 𝑷𝑽&𝑩𝑬𝑺𝑺) 0.400 

 

Since energy cost is of great importance to consumers, daily saving ratio of scenario 𝐼𝐼 in 

comparison to case 𝐼 i.e. as the worst case in terms of energy cost can be estimated from 

Table𝐼𝐼𝐼. It is seen that more than 92% reduction in cost can be achieved in scenario 𝐼𝐼 by 

using energy 𝑃𝑉 and enabling electricity exchange with the conventional grid. Electrical 

energy production using 𝑃𝑉 in scenario 𝐼𝐼revenue is achieved, and this is because of the 

fact that purchasing this amount of energy from the upstream grid costs much 

more.(Rahman. S.,et al., 2020) 

Also, scenario 𝐼𝐼𝐼  show that the incorporation of 𝐵𝐸𝑆𝑆 into electrical grid has positive 

effects if there is an appropriate energy management with satisfying some constraints 

according to the case scenario. So we can analyze that in the periods when 𝐵𝐸𝑆𝑆 is 

operation at smart office with an 𝑆𝑂𝐶 approximately high and their discharging electricity 

price is lower than the electricity price buy it from the conventional grid, the 𝐵𝐸𝑆𝑆 

discharge their energy by benefiting from the electrical energy previously stored. 

Therefore, we can deduce that all the demand of the smart office, including flexible and 

non-flexible appliances load, battery storage charge, are covered with an optimized energy 

management between the production sources due the implemented models by considering 

the costs and the several mathematical constraints. 

 

CONCLUSION 

A new perspective based on differential evolution algorithm is proposed in this research 

work for coherent solution of optimal energy management of PV and BESS in a typical 

university office. Different attributes and constraints such as power demands, capacity 

limits of units and other operational constraints are taken into consideration in the 

formulation of energy management problem. The efficacy of the differential evolution 

algorithm was established using differential evolution algorithm codes. Differential 

evolution algorithm, it was realized, can proffer better solutions in terms of the objective 
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function value, convergence speed and actual number solutions for the case scenarios. A 

scenario-based stochastic approach was developed in this sophisticated energy 

architecture in order to deal with the uncertain nature of𝑃𝑉, and actual 𝑇𝑜𝑈 tariffs for 

electricity prices were evaluated. Various case studies were carried out considering 

diverse scenarios to validate the effectiveness of the proposed concept.  

As a result, it is found that the objective costs get the highest value in the Base Case 

(using conventional grid to supply the smart office) which has no 𝑃𝑉 sources and 𝐵𝐸𝑆𝑆. 

On the other hand, the cost was reduced by nearly 92% with PV integration while 90% 

reduction was achieved considering both 𝑃𝑉 and𝐵𝐸𝑆𝑆. The simulation results show the 

global optimum solution for many consecutive days with important reduction of execution 

time and by achieving a significant energy cost savings of the considered scenarios.As a 

future work, the presented methodology can be extended with taking the advantage of the 

energy reduction capabilities of curtail able loads by demand side management strategies. 

Also, different types of energy conversion system assets can be considered. Moreover, the 

multi-objective system modeling can be adopted existing proposed architecture for 

analyzing the performance of this optimization algorithm from different aspects. 

 

RECOMENDATIONS 

The following recommendations have been suggested for the improvement of modeling 

and optimization of energy management in smart building, considering 𝑷𝑽, 𝑩𝑬𝑺𝑺 and its 

benefits on the energy sector. 

• To eliminate rigorous calculations, slower convergence and infeasible result (s) 

involved, genetic algorithm is a powerful optimization tool for finding solutions of 

optimization of energy management decision variables (cost functions, power 

etc.).It gives the exact solution of micro-grid energy management problems which 

converge as fast as possible as exemplified in this research study. Although, 

particle swarm optimization, ant bee colony and market exchange algorithms 

were also applied in some literatures to solve the optimization of energy 

management problems in smart buildings but the effectiveness of the above 

named algorithms for larger micro-grids which interact with the conventional 

grid is not known yet. The reason is that the calculations involved are difficult to 

manipulate efficiently despite it having the least objective function value. 

Conversely, chaotic improved harmony search algorithm, biogeography based 

optimization algorithm, stochastic fractal search algorithm etc. usages are 

limited to a few problems which make it rather impermissible to use in this kind 

of research since it falls into local optimum in high-dimensional space, besides, it 

also have a low convergence rate characteristic in the iterative process. Results 

obtained by artificial bee colony are often associated with large diversity and in 

most situations, convergence to either optimal or near optimal solution is rather 

difficult.  

• In addition, the research therefore recommends that not only should this 

proposed method (differential evolution algorithm) be included in the curriculum 

http://www.harvardpublications.com/


 
HARVARD INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & 

TECHNOLOGY  (VOL. 9 NO. 5) SEPTEMBER, 2025 EDITIONS 
 

 

E-ISSN 3027-0480  

P- ISSN 3027-2750                                   www.harvardpublications.com 
 26 

for higher programs, but also be applied when solving modeling and optimization 

of energy management in smart building problems. Doing this will assist research 

students in accomplishing desired result (s), eliminate rigorous calculation 

processes and obtain optimal converging solutions. The financial evaluation 

should be enhanced by including certain factors such as potential loss of heat 

during generation in these technologies and reduce maintenance on the operating 

device. 
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