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With the

smart grid, which presents
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consumption systems in a

the next generation of smart office with the

electrical power systems,
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energy expenditure. This
paper
differential

algorithm to optimize the

presents a

evolution
integration of renewable

INTRODUCTION

The increasing demand for
energy-efficient and
sustainable building
operations  necessitates
advanced energy
management strategies.
(Abushnaf et al.,
2023).The integration of
photovoltaic (PV) systems
and battery storage offers
a promising approach to
reduce energy costs and
enhance energy reliability.
(Chen et al., 2022; Pal &
Kumar, 2021). However,
the intermittent nature of
PV generation, coupled
with fluctuating electricity
prices under Time-of-Use
(TOU) tariffs and variable
building loads, poses
significant challenges in
optimizing energy flows
(Panda & Pati, 2021). The
Building, equipped with
PV panels and a battery
storage system, requires
an effective energy
management

(EMS) to
operational

system
minimize
costs while
satisfying electrical
demand and adhering to
system constraints.
(Elkazaz et al., 2020).The
primary challenge is to

optimally schedule the
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energy  resources, and

battery storage systems.
The aim of the study is to
optimize energy
management in buildings
by integrating a
photovoltaic (PV) system
with a Dbattery storage
system, using the
Differential Evolution (DE)
algorithm to minimize
operational costs while
ensuring efficient energy
utilization and system
reliability. To achieve this,
energy model using PV,
battery, and grid data over
24 hours in 1- hour steps
was developed; also, energy
cost was minimized by
optimizing PV battery and
grid usage. Moreover,
power balance was kept at
equilibrium to meet load
demand and enable grid
export while battery limits
1s applied to state of charge
(SOC), discharge rate and
capacity. In addition, an
differential

evolution algorithm was

heuristic

used to solve the energy
optimization problem.
Three

evaluated to minimize costs

scenarios  were
of energy in the offices.
Scenario I explored grid
supply only,
looked at
equilibrium of the micro
grid with the PV and grid
supply while scenario III

scenario II
electricity

considered equilibrium of
the micro grid with PV,
BESS and grid supply.

Moreover, actual time-of-
use (TOU) tariffs for
electricity prices is

evaluated. The simulation
results of the devised model
are given for different case
the
effectiveness of the system

studies and
is demonstrated via a
comparative study. As a
result, it was found that the
operational costs are
decreased nearly 92% by
only
(PV)
production according to the
which

integrating
photovoltaic

case has no

additional sources. Also, a

substantial reduction of
90% 1s achieved by
considering both PV and
BESS. Results find the

global optimum solution for
the 24 — hour horizon with

important reduction of
execution time and Dby
achieving significant

energy cost savings of the
considered scenarios. To

improve modeling and
optimization of energy in
smart buildings
considering the benefits of
PV and BESS on the power
sector, genetic algorithm is
a powerful optimization
tool recommended for
finding solutions to
optimization of energy
management decision
like

functions, power and so on.

variables cost
It gives the exact solution of

micro grid energy

management problems
which converge as fast as
possible as exemplified in

this research study.

ower generated by the PV system, the charge/discharge cycles of the battery

storage, and the power exchanged with the national grid to achieve cost

minimization. The objective is to minimize the total energy cost, which includes

the cost of power purchased from the grid, revenue from selling excess power, and battery

operational costs (e.g., charging and degradation costs). The system must account for

constraints such as power balance, grid import/export limits, PV generation capacity,

battery charging/discharging rates, and the prohibition of simultaneous charging and

discharging. (Farid et al., 2022). The problem is further complicated by the non-linear and

dynamic nature of the energy system, requiring a robust optimization technique capable
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of handling multiple variables and constraints. To ensure that comprehensive research is
achieved, key questions to be addressed are as follows:
1. To what extent does the BESS impact on energy cost savings in COET Building?
2. To what extent do cost function values of the three scenarios used in this research
have to differ?
3. To what extent does the stochastic nature of PV affect the power output of the
micro-grid

However, this study aims to develop an energy management system for a smart Building
using the differential evolution algorithm to optimize the integration of PV and battery
storage systems, minimizing energy costs while ensuring reliable operation. It addresses
the need for a sustainable energy management solution that can adapt to the real-world
constraints and variable conditions, contributing to the efficient operation of the building.
Also, the research addresses critical challenges in energy efficiency, environmental
sustainability, and smart grid development. Its comprehensive approach offers a scalable,
practical framework with far-reaching implications for building operations, policy, and
academic research, making it a pivotal contribution to the global transition toward
renewable energy systems.
The Differential Evolution (DE) algorithm, a population-based heuristic optimization
method, is proposed to address this challenge due to its ability to efficiently handle non-
linear, constrained optimization problems and find global optima. Unlike traditional
methods like Mixed Integer Linear Programming (MILP), DE can effectively manage the
non-linear dynamics of the Building’s energy system, including variable TOU tariffs
(ranging from 0.017 to 0.572 $/kWh over 24 hours) and battery state-of-charge constraints
involves formulating a single-objective constrained optimization model to minimize the
cost function, incorporating terms for grid power over a 24-hour horizon with hourly key
steps. (Moghaddam et al., 2020)

oria (O, Pgria(0), P (), PR (£), VE{1,2, ... 24} (1)
Key constraints include maintaining power balance, respecting grid and PV and battery
storage capacity limits, and ensuring no simultaneous charging and discharging. (Hasan
et al., 2021).

P, (6) = Py(t) — P§R(t) — P(E) + PE(E) + P34, (0), @)
0< Pria(t) < PR (o), 3)
0 < P(t) < B (v), (4)
S0CT™(t) < S0C,(t) <1 (5)
vt € {1,2...24} (6)

The Differential evolution algorithm will iteratively optimize these variables through
initialization, mutation, crossover and selection steps to determine the optimal energy
dispatch. (Rahman et al., 2020).
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SYSTEM OVERVIEW

THEORECTICAL FRAMEWORK

Battery Storage Systems

Battery Energy Storage Systems (BESS) are cutting-edge technologies that store
electrical energy in rechargeable batteries for later use. They cater to a wide range of
applications, from small gadgets to large-scale grid systems. Battery Energy Storage
Systems (BESS) play a vital role in today’s energy landscape. They help us harness
renewable energy, boost the reliability of our power grids and support a wide range of
applications, no matter the scale (He. G., et al. (2025).

These systems combine various types of batteries sodium — like nickel-metal hydride
(NiMH), flow batteries, Sodium sulfur (NaS), lithium-ion, lead acid, nickel-cadmium
(NiCD) with advanced battery systems (BMS) to ensure they perform safely and
efficiently over time BESS are particularly useful for capturing energy when demand is
low or when there’s an excess of generation, such as from renewable sources like solar or
wind. They can then release this stored energy during peak demand times or when supply
is short making them essential for tasks like peak shaving, reducing demand charges,
regulating frequency, supporting voltage, and even helping to restore the grid after
outages. (He. G., et al. (2025).

Grid Application of Battery Storage
Battery Energy Storage Systems (BESS) play a vital role in today’s power grid and
commercial activities, especially as we see more renewable energy sources coming into

play;

I. Peak Shaving and Demand Charge Reduction: In commercial and
industrial environments, BESS can store energy during off-peak times and
release it during peak demand, helping to lower energy costs This strategy is
especially beneficial for businesses like offices and manufacturing plants, where
energy rates soar during peak hours. (He. G., et al. (2025).

II. Grid Services: BESS are essential for providing key grid services such as

frequency regulation, voltage support and black-start capabilities (Zhao et
al.,2021). They react swiftly to imbalances in the grid, helping to stabilize
frequency and voltage particularly in systems that rely heavily on renewable
energy (He. G., et al. (2025). Additionally, BESS assist in restoring the grid after
outages by supplying energy needed to restart main generators (Abdolazimi et
al., 2022)

I11. Renewable Energy Integration: BESS help address the unpredictability of
renewable energy sources like solar and wind by storing surplus energy and
providing it during periods of low generation, which enhances the reliability of
the grid.(He. G., et al. (2025)

Energy Management
Energy management is defined as a strategic and systematic process that encompasses
the planning, monitoring, control, and optimization of energy use to enhance efficiency,
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reduce costs, and minimize environmental impact. It involves the deployment of advanced
technologies, such as energy management systems (EMS), smart grids, and energy
storage systems, to collect and analyze data on energy consumption, temperature,
occupancy, and other metrics. This data-driven approach enables informed decision-
making to reduce waste, improve infrastructure, and achieve energy savings through
strategies like demand response and renewable energy integration. Energy management
1s driven by the need to address rising energy costs, comply with government regulations,
and mitigate climate change, while leveraging innovations like the Internet of Things
(IoT), artificial intelligence (AI), and blockchain to promote sustainable energy practices
across residential, commercial, and industrial sectors (Zhao., B. 2021).). Energy
management is a critical discipline in addressing the global demand for sustainable,
efficient, and environmentally responsible energy use.

Advantages and Disadvantages of Energy Management

Key advantages include cost-effectiveness, achieved through reduced energy bills and
operational efficiencies, and environmental benefits, such as lower greenhouse gas
emissions and reduced resource depletion (Zhao. B., 2021). Technologies like EMS, smart
grids, and energy storage systems enable organizations to meet regulatory requirements
and contribute to sustainable development. However, challenges include high initial costs
for implementation, maintenance, and training, as well as complexities in data
management and infrastructure upgrades (Zhao. B., 2021). The environmental impact of
manufacturing energy storage systems and the need for sustainable materials are also
noted as concerns, requiring further research to address these limitations (Zhao. B., et al.
2021)

Differential evolution Algorithm

Differential evolution is a simple, meta-heuristic, and effective, optimization-based
algorithm on population which aims to solve continuous optimization problems. Storn and
Price first introduced DE in 1995. DE is famous for its ease of use reliability and
effectiveness in solving intricate issues with several optimum points. DE evolves a
population of candidate solutions through three main operators: mutation, cross over, and
selection. DE has been the focus of intensive research with numerous studies focused on
its theoretical foundations It is a branch of evolutionary programming; it was proposed by
Rainer Storm and Kenneth Price in 1997 for optimization problems (Hasan. M., et
al.2021).

Key Operations in Differential Evolution Algorithms
Initialization
Mutation

Recombination

Ll e

Selection
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Figure 1: A Block Diagram Showing the Key Operations in Differential Evolution
Algorithm

Initialization

The beginning step of the differential evolution algorithm is foundational in setting up

the rest of the algorithm. In the initialization phase, we have vectors which are list of

numbers corresponding to potential solutions to the problem.

Steps In Initialization

1. Determine a population size: A specific number of starting vectors can be selected each
vector is composed of a unique set of numbers that denote possible solutions (e.g.:
NP=20).

ii. Limit: Both the upper limit and the lower limit exists. These boundaries are known
as search places.

iii. Pick Random Vector: For each of the twenty vectors the algorithm randomly generates
values using its random number generator ensuring selections are spread across the
designated range

iv. Create Population Size : Upon selecting random values for all twenty vectors you now
have a population (a collection of 20 Vectors).

Mutation

In Differential evolution (DE) each individual in the population gets its own unique
mutant vector, often referred to as the target vector. This approach set DE apart from
traditional evolutionary algorithms which typically rely on small, random tweaks for
mutation. Instead, DE’s mutation process is driven by the differences between vectors,
giving it a distinctive edge when it comes to continuous optimization.

Steps For Mutation

For every target vector Xi ¢ in the population at generation G, we create Vi ¢ using a
mutation strategy. The most widely used strategy, known as DE/rand/1, operates in the
folly way;

Vic=Xr1,6+ F.(Xr26— Xr36)
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X1, 6, Xr2 6, Xr3 6 : These are three unique vectors picked at random from the current
population ensuring they differ from target vector Xyic .

F: This is the scaling factor (usually€ [0,2] , often around 0.5-1), which helps determine
how much perturbation will affect the outcome.

X2, - Xr36 : The represent the difference vector, which illustrates both direction and
distance between two random solutions.

Vi, The mutant vector is formed by adding the scaled difference to the base vector X:1,¢

Recombination

In the Differential Evolution (de) algorithm, recombination referred to as crossover plays
a crucial role after mutation. It’s the process where we create a trial vector by blending
the mutant vector produced during the mutation phase which is essentially a member of
the current population.

Recombination takes element from the mutant vector (V; ¢) and blends them with the
target vector

(Xi, ¢) to produce a trial vector (Ui ¢) (for each individual in the population during
Generation G. This process strikes a balance between the exploration brought on by
mutation and retention of beneficial traits from the target vector. C.

Selection

Selection is the crucial final steps in each generation, deciding which candidate solutions
get to move onto to the next round. This process comes after mutation and recombination
(phases) ensuring that the population is always evolving towards the better solutions.
Selections in DE operates like a competitive process where the trial vector (U;c) created
through mutation and recombination are compared against the target vector (X;c) from
the current population at generation G.

Application of Differential Evolution Algorithms to Optimization and Energy
Management

DE, as brought forth by Storn and Price (1997), is particularly well suited for continuous
optimization problems, which are common in optimization tasks and energy management.

These strengths include the following:

Application to Optimization

1. Non-Linear and Multi-Modal Problems: DE's non-differentiable, multi-modal
objective function optimization capability stems from its stochastic search technique
exploitation via hit-and-run mutation, crossover, and selection processes. Opara and
Arabas (2018) observed that DE is capable of exploring several loci of multiple optima
owing to its ability to maintain population diversity with mutation strategy DE/rand/1
or DE/best/1 and thus, tackle problems where traditional methods based on gradients
become inoperative.
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11. Global Search Ability: The analyses done in Opara and Arabas (2018) report DE as
capable of both exploration and exploitation neutral equilibrium emphasis.

1. Insensitivity and Multifaceted Nature: DE demands few other constraints than that
of differentiability or continuity to the problem being optimized, making DE easier
possess fewer tuning factors than problem NP, F, and CR. Even though each task
might require different problem simplifications.

Applications in Energy Management

Energy management encompasses the intricacies of optimizing systems like energy
distribution, integrating renewable resources, and scheduling with an emphasis on
energy efficiency. Most of these systems exhibit non-linear, constrained, and dynamic
optimization. It can be said that DE’s characteristics are particularly helpful in these
domains:

1. Integration of Renewable Energy: DE is widely used for parameter optimization of
wind turbines, solar panels, and energy storage systems in renewable energy systems.
Dynamic environments characterized by fluctuating renewable energies require
nimble adaptation from algorithms. Opara and Arabas (2018) provide theoretical
analyses indicating DE mutation strategies like DE/current-to-best/1 to be effective
in such scenarios.

1. Energy-Efficient Scheduling: DE also finds its application in energy management for
task scheduling in smart grids or industrial systems with a goal to curb energy
consumption.

EMPERICAL REVIEW

Numerous researchers have developed several optimization models to solve the energy
management problem in SG specially related to smart home. In, Elham & Shahram, 2015
an automatic and optimal residential energy consumption scheduling technique is
proposed as mixed integer NLP that aims to minimize the overall Cost of electricity and
natural gas in a building. The scheduling of electrical and thermal appliances has been
reached, but it did not consider the wind system generation and V2G, which play an
essential role in smart home, because V2G can be used to store the energy and generate
it back later when needed. In Chen et al., 2011, a smart energy management system is
proposed to coordinate the power production of distributed generation sources and energy
storage system for a micro grid, where obtained forecasting model was able to predict
hourly power generation, with the missing of integrating of EVs in the model where their
charging and discharging process have an important impact and affect the results. In this
paper, we present a differential evolution algorithm to optimize the energy production
and consumption systems in a smart office with an effective deployment of several DERs,
such as the integration of renewable energy production (solar) and battery storage
systems as a DG (distributed generation). Different case studies are introduced by varying
significant factors through the design of experiments with modulation of the various
energy source. After that, a proposed is used to solve the problem of commercial (office)
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energy management by finding the global optimum solution for different scenario with
significant reduction of execution time of the scenarios.

METHODOLOGY

In this section, we present the methodology for the research objectives (a single objective
optimization algorithm is applied on a typical smart office to minimize Energy cost. The
building considered in this research, comprises of PV panels and Battery energy storage
system(BESS), as shown in Fig.1l. It is also connected to the upstream grid for
selling/purchasing energy when there is energy excess/shortage respectively. This
research considers only one type of demand: electrical demand associated with lighting
and other home appliances plus energy prosumer system (Battery storage system). It is
also assumed that the building is equipped with smart meter, which provides all the
required information. Evaluating the proposed strategy, three scenarios are considered:
the smart office flexible and non-flexible loads supplied by the conventional power grid,
the smart office electrical loads supplied by conventional power grid plus PV and finally,
the smart office incorporating National grid, PV and BESS for its electrical loads. The
scheduling horizon is 24 hours with time intervals of 1 hour. Mathematical models of each
system component, energy balances and efficiency constraints will be proposed in an
optimization framework, as the following. The ultimate goal is to investigate the impact
of battery energy in the mentioned hybrid system on cost reduction and energy saving
strategies. The mathematical explanations of the utilized units, sources and the
optimization problem are shown below.

PROBLEM FORMULATION

The energy management problem is modeled as a Differential Evolutionary algorithm
(DE) along the horizon T with t time steps. The time slot is considered1h; thus, each day
will be 24 slots.

Objective Function

The objective function model of the adopted system is formulated as follows:

min f (cost) = B2 {(Piria(®) x w(t) = Pria(t) X Coon(t) + Ppy () X Cpy + P (1) X chisch}
(7)

Wheren(t) = TOU(t) refers to market time-of-use tariff at hour ¢ ($/KWh), P, (t) is power
generated by the PVunit in period ¢; Cpy is the maintenance generation costs of PV system.
PZ,’fl-d(t)represents the purchased electric power from the traditional grid in period¢, and

oria(t) 1s sold electric power to the conventional grid in period ¢. C,; denotes electricity
cost when it is sold to the grid; C2%"stands for maintenance cost of battery storage,

PBisch(t) is the discharge power of battery storage in time ¢.
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Figure 1: Proposed System Architecture

Power Balance Equality Constraint

In a smart office, ensuring a balance between energy production and consumption is
critical. The power balance equality constraint of the smart office is given by eq. (8). The
power balance equality constraint ensures that at any given time ¢, the total power
provided by the traditional grid,PVunit , and battery energy storage equals the total power
demand by the smart office load (flexible and non-flexible) and any excess power sold
back to the traditional grid. This balance is crucial for optimizing (minimizing) the energy
management within the smart office and maintaining operational efficiency and
reliability of the hybrid energy system.

() + Ppy(£) + PR () = PR (t) + P (t) + Piria(t) (8)

It is noteworthy that the positive values for P;’;‘id(t) are considered as the power purchased

from the grid and the negative values as the power sold to the grid. P¥%(t) designs the

entire smart office load demand in period ¢.Pg;4(t) denotes the electricity amount sold to

the grid in period ¢, P§"(t) represents the charge power by battery energy storage device
in period ¢.

Heat Balance Equality Constraint

The heat balance equality constraint in the smart office for the three scenarios discussed
in this paper is non-existent. This is due to the fact that the distributed energy resources
examined in this research, along with the upstream grid for energy exchange during
surplus or deficit conditions, are unable to produce heat for the smart office. In summary,
the single objective constrained optimization problem of interest in the smart office can
be summarized as follows:

E-ISSN 3027-0480
P-ISSN 3027-2750 www.harvardpublications.com 1 0


http://www.harvardpublications.com/

HARVARD INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH &

TECHNOLOGY (VOL. 9 NO. 5) SEPTEMBER, 2025 EDITIONS
.______________________________________________________________|

Minimizef(cost) = {24, {(P,(Om(t) — P (6) Coeu (1)) + Poy ()Coy +

PR ()R, m(t) = TOU (£) 9)
Subject to relevant constraints

0 < Pyrig(t) < Pgrig ™™ (10)
0 < Piliq () < Porig™ (11)
0 < P, (t) < P13 (12
Pgi“h(t) < Pgischmax(t) (13)

For ease of computation and coding into PYTHON, we introduce the following variables;

P;T;lid(t) = X1 Pgria(t) = x5 Ppy(t) = x3,, PR (t) = x4y, m(t) = m,

Disch
Cp

Cpy =C1, =y, Coo = C3.

The smart office single-objective constrained optimization problem is then equivalent to

Minimizef(cost) = {2531{(961,% — X5.C3) + X3¢ + x4,tc2} (14)
In expanded form we have;
Minimizef (cost) = Z%;{(’ﬁ;ﬂt - x2_t63) + X300, + x4‘tc2} (15)

= X117 + Xq 2T + X9 373 + X1 4Ty + X1 575 + X1 6T + X777 + X1 8T8 + X1 979 + X1,10T10
tX1,11T1 + X1,12M12 + X1,1313 + X1,14T14 + X115T15 + X116T16 T X1,17T17 + X1,18T18 T X1,19719
+ X1,20M20
+X1,21M21 + X1 22M22 + X123T23 + X124T24
Xo1 F X220t Xo3 tXo4 T Xo5+ X6+ X7+ X2+ X209+ X210
—| tX211 T X212 T X313 T X514 + X215 + X316 T X217 + X218 T X219 T X220 | C3
tX221 + X222 T X223 T X224
X371t X32 + X33+ X34+ X35+ X365+ X37+ X388+ X399+ X310
+| tX311 + X312 T X313 T X314 T X315 + X316 T X317 T X318 T X319 T X320 | €4
tX321 T X322 + X323 + X324
Xg1 T Xgp T X433+ X4 T Xg5+ X6+ Xg7 T Xgg+ X9+ X410
+| tX411 F Xa12 T X413 T Xg14 T X415 T X416 T Xa17 T X418 T X410 T Xa20 | € (16)
tX421 t X422 + X423 T Xg24

The relevant constraints become;
0<x, < ;T{Zax
0<xy, <Pgig” an
0<x3, < PZL‘”‘

Dischmax
X4: < Ppss

The data set for the above optimization problem is as follows;
Cl = 0.05, C2 = 0.05, C3 = 0.80

dischmax(t)
ax p
exmax pv
immax .
grid
grid
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in periodt.

Modeling of Power grid
The electricity power injected from the National grid network during the periodtis
determined by the amount of gas/coal consumed by the National gridP g,;;(KW)and can be

expressed as:
oria(8) = PEe4(t) + PF(t) (18)

The imported electric power from the external grid network Pjr,;(¢) is directly utilized to
fulfill the electrical demand of curtailable, flexible and non-flexible loads in the smart

office in periodt.

Power grid constraint:
The quantity of imported electric power from the main grid is constrained by its branch
rating or electricity market regulations:

0 < PIm,(t) < P ® (19)

immax(t) .

Where P™,(t) designs the imported electric power from the main grid int;P grid is

grid
designed to meet the maximum imported power from the main gird int. The quantity of
electric power sold to the main grid is restricted by its branch rating or regulations within

the electricity market:

0 < P25, (8) < PEXTex® (20)

Where PZﬁZax(t) 1s the maximum power exported to the main gird in ¢ and P;’;id (t) designs

exported electric power to the main grid in ¢. It is evident that importing/selling electrical
energy (E;p,/E.y,) from / to the upstream main grid at the same time is not achievable.

Consequently, the following inequality constraints for the grid must be satisfied:

Ejpnpy () + E(t) o (21)

Modeling of Photovoltaic System:
The limit of the amount of PV generation.

0< P, (t) <P (0). (22)

The output power generated from PV system
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Ppy(t) < A X p X SI(t). (23)

Where P3”* is the maximum PV power allowed in periodt, A is the PVsystem area, p is the
efficiency, and SI(t) is the solar irradiation

Modeling of Battery Storage System
The charging power of the battery storage system is limited by the maximum charging

rate of the converter that links the battery storage system to the micro-grid. The boundary
for the allowed charging power is:

PSh(t) < pomer® (24)
The discharge power of the battery energy storage system is constrained by the maximum

discharging rate of the converter that connects the battery energy storage system to the
micro-grid. The limit for allowable discharging power is:

piisch(p) < plischmax(t) (25)
Simultaneous charging and discharging are prohibited.

Y +Z() <1 (26)
Where Y(t) represents the state of the battery at t (= 1 charging; = 0 otherwise); Z(t)

represents the state of the battery at ¢ (=1 discharging; = 0 otherwise).
The electricity stored in the battery is represented as: t > 1:

PEMtyxat Disch
Nomg X SOCg(t) = Nomg XSOCB(t—1)+(67—ed X Pg(t) xdt) @7
The initial state of the battery:
init(@—edxzﬁgi“h(nxdt)

omg X 5(1) = Nom
N S0Cs(1) = Nom, (28
The limit of the state of charge of the battery:
socye (29)
The maximum battery charge limit:

ch
Pi (Bxdt (30)

CBpp
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Where PS(t) and P2¥"(t) denote the charge and discharge power by the battery storage
at t.P§™* and Po™*represent the maximum allowable power for charging and discharging
the battery, respectively; Nomgstands for the battery nominal capacity; SOCg(t)
constitutes the state of charge of the battery; e, and e; makes up the charging and
discharging coefficient factor; NomZconstitutes the initial battery capacity and SOCF*"is
the minimum state of charge of battery storage.

Modeling of Solving Optimization and Energy Management Problem in Building
Considering PV with Integration of Battery Storage System Using the
Differential Evolution Algorithm

Power output and of the generating PV units, electric power sold/purchased from the
traditional grid, BESS operation which involves three interrelated sets (P2"(t), PS"(t)
and SOCy in the problem, are decision/control variables. Originally, differential evolution
algorithm is a simple population-based evolutionary computational algorithm for global
optimization. Not only is it considered one of the most accurate, but of course one of the
fastest meta-heuristic algorithms introduced in 1995 by Price and Storn (Storn & Price,
1997). This section provides the solution methodology to the energy management
problems through differential evolution algorithm (DE).

Parameter Setup
The parameter set up mandates the user topic key parameters that control the differential
evolution— population size (L); boundary constraints of optimization variables (NG);

mutation factor (f, ), crossover rate (CR); and the stopping criterion of maximum number

of iterations (generations) t,,,,. This approach ensures each solution is seen as capable of
playing the vector role. Therefore, each solution f should contain these items as
follows:Population f = [Py, ., Pinps Pinp+1s —» Pinpenes Higs o Hinps Hinp a1, oo Hinp+nn) (31)

Furthermore, P;; = [Pi,ppi,z' ...,Pi,Np]stands for the position of the j individual of a

population of real valued N,-dimensional vectors.

Initialization

The initial population encompasses combinations of solely the candidate dispatch
solutions, which do not limit themselves to satisfying all the constraints alone, but are
feasible solutions of economic dispatch. The element of a parent is the combination of
power outputs of the generating units arbitrarily selected by a random number ranging
over [P:mngnax] .

min( )(P:"ax?lm(i:1,2,...,NG,i¢d,j=1,2,...,L)>

P, =P,
/ (32)

Where rand( )is uniform random number ranging over [0, 1].
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min( )( maxl (L 1,2,...,NG,i¢d,j=1,2,...,L))

HY = H,,

(33)
Also, the element of a parent is the combination of heat outputs of the generating units
chosen arbitrarily by a random number ranging over [ ] (Hasan. M., et al.2021)
Evaluation

Minimizing the operating cost function is the goal here. When penalty factors are
calculated, objective function— cost function— is evaluated. After evaluation of objective
function, a global best solution is determined (f besti)”

Mutation Operation (Differential Operation)
Mutation is an operation that adds a vector differential to a population vector of
individuals according to the following equation:
t _ . . .
Ay =Py i+ f (Ph,—Ph)(i=12.,NGi#dj=12,..,L) 54

Where T is the time (generation), P’ = [Pt P,...,Py ] designs the position of the

il
j™ndividual of a population of real valued NG-dimensional vectors.

A [At Ayyes Ay ] is the position of the j*individual of a mutant vector. R;, R, and

il
R are mutually different integers that are also different from the running index i;f, is
the mutation factor; and f, > 0 is an actual parameter controlling the amplification of

the difference between two individuals with indexes R, and R;(j)in a bid to avoid search
stagnation. It is usually a constant value taken from the range [0.4,1]. After the heat
population is initialized, the mutation operator creates the next population.

Cy = Hy i+ f, (Hay — Hey)(i=12,..,NGi#d,j=12,..,L) 5

[H Lo H G, H T} stands for the position of the j*individual of a population of

real valued NG-dimensional vectors. C; = [Ct Clo.sCh } stands for the position of

il

the j*individual of a mutant vector. R, R,and Ry are mutually different integers (Perez &
Maldonado, 2005).

Recombination

Following the mutation operation, recombination is applied to the population to generate
a trial vector through replacement certain parameters of the target vector. This is carried
out by the corresponding parameters of a randomly generated donor vector. For each
vectorA!*! and C!*'an index Rs(i)are randomly chosen using a uniform distribution and
a trial vector
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t+1 t+1 t+1 t+1 T t+1 _ t+1 t+1 t+1 T .
B _[Bn B, ..., Byg ]and D, _[Dil ,Dyy\o s Diyg ]respectlvely.

1 (A i (RyG) S CRyor G=Rs(D)) _ o
Bt = {ng it (R,(j) < CR) or f % Re(0) (i=12..,NGi#dj=12,..,L)
(36)
1 [Chif (R(D) < CRYor G =Rs(D) . . o
Di*t = {H% it (R.() < CR) or ( # Ra(D)) (i=12.,NGi#dj=12..,L)
@7

WhereR,(j)is the j evaluation of a uniform random number generation with [0,1]. CR is
the crossover or recombination rate in the rate in the range [0,1]. Usually the performance
of a DE algorithm depends on the three variables; the population size, the mutation
factor f and the CR (Hasan. M., et al.2021)

Selection Operation
Selection procedure oversees the production of better offspring. To decide the plausibility
of vector Bi™! as a member of the population of the next generation, it is compared with

the corresponding vector Pf] Thus, f denotes the cost function under minimization, then

iy (BEL (=12, NGY; B < F(PY)
Py =90 . . (i=12,..,NG)
Py, ( =12,..,NG); otherwise

(38)

(i=12, ..,NG)

H:, (j=1,2,..,NG); otherwise

e = {Dg.“, G=12,..,NG); f(D*) < f(HY)
ij
y

(39)

In the case above, the cost of each of trial vector is compared with that of its parent target
vector P! andH:. If the cost f of the target vector P! is lower than that of the trial vector,
the target is allowed to advance to the next generation. Otherwise, a trial vector replaces
the target vector in the next generation (Chen. H. et al, 2022).

Verification of The Stopping Criterion

Set the generation number fort =t + 1. Then repeat mutation, recombination and
selection operation until the stop criterion— usually a maximum number of iterations
(generations)t,,,,— is met. The stop criterion depends on the type of problem (Elkazaz.M.
F, et al, 2020).

Optimization Steps

The CHPED problem is solved by DE algorithm through the seven steps proposed below:
Step 1: initialize solutions randomly;

Step 2: penalize infeasible solutions;

Step 3: evaluate solutions and determine global best solution;
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Step 4: create newer solutions;
Step 5: constraint-handle and penalize infeasible solutions;
Step 6: evaluate solutions, select and determine global best solution;
Step 7: if convergence criteria is satisfied, then exit, otherwise go to step 4.
We begin with the Pseudocode for the differential evolution Algorithm
1. Input: Fitness function, Lb, Ub, Ny, T, F
2. Evaluate fitness (f) of P
t=1toT
fori=1to Np
Generate the donor vector (Vi) using mutation
Perform crossover to generate offspring (Us)

end
fori=1to Np
BoundU;:

Evaluate fitness (fui) of Ui
Perform greedy selection using fui and fi to update P

Read input data; Fitness
function (FF), Lu U M.
T

|

Initialize population size, mutation factor]

end

Crossover rate and maximum iteration

r=r+1 ‘_®

r L /=/*]

constraints

Perform Mutation operation ]

!

Perform Crossowver operation ]

!

[ Perform Greedy Selection
> R
STOP

Figure 2: Computational flow of DE.

Evaluate FF while satisfying all ]
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SIMULATION RESULTS

Based on the flow chart/formulas illustrated above. The sub-routines are found in
Appendix Al. The studied smart office can meet its energy consumption (load or/and
charging battery storage) from the main power grid or/and the PV system and the battery
storage (discharge mode). If there is a power surplus from all these systems, the exceeding
energy can be sold to the grid (this research allows the

LOAD DEMAND IN THE SMART OFFICE

SIS I I I I I B I P S N NN
LCELELELLLELEELELLLLELLLLSLSELSELSL S
ST AT AT BT KT ST GT AT BT GTLET TRV R AT ST RN RS T AST AT AV

e el
O N D O O

O N B O

B NON-FLEXIBLE LOAD DEMAND (KW) B FLEXIBLE LOAD DEMAND (KW)

Figure 3: Load Demand in the smart office.
buy/store/sell operation of the electrical power)

The electricity demand data for the smart office is sourced from (Hasan. M., et
al.2021).The electricity demand of the smart office is illustrated in Fig. 3. During specific
periods, flexible and non-flexible loads (such as TV, sensors, AC, Laptop, cell-phone
Illumination, BESS etc.) solely draw electricity. However, 24 hours horizon according to
the graph profile of Fig.2, both flexible and non-flexible loads, along with the battery
energy storage device, draw electricity from the hybrid-energy system.

Table I: Time of use Tariff

t 7 9 10 11 12
$/KWh 0.033 0.054 0.215 0.572 0.572 0.572
t 13 14 15 16 17 18
$/KWh 0.215 0.572 0.286 0.279 0.086 0.059
t 19 20 21 22 23 24
$ /KWh 0.050 0.061 0.181 0.077 0.043 0.037

In order to minimize the daily operational cost of the hybrid-energy system along with the
consideration of PV energy stochasticity, the hybrid-energy system concept is propounded
by using Differential evolution algorithm. The devised hybrid-energy system management
model is tested in PYTHON environment to solve for the optimal energy cost of load

18
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(flexible and non-flexible) in the office considering the three scenarios. It is important to
indicate that power flow equations, loss functions, reactive power flow and losses are
beyond the scope of our study. The stochasticity is not considered for the other input data
(such as demand) excluding PV wunit. From the other perspective, the sizing and
investment-based economic analyses of PV unit is not in the scope of our research. Input
data considered and related results to different cases will be detailed in the following
subsections.

Table II: Parameters Estimates

P, Py 5,0.6 KW
Cpy(t) = CHisch 0.05 $/KWh
Celec,sell 0.80 $ /KWh
PR (1), P (8) 1 KW
P,,(t),An 3,164,97 KW, m2, %
SOC3,,inSOCpmax 0.2,1 pu
Ny Mgen P (®) 97,97,3.8 %, KW
P (t) 8 KW
INPUT DATA

In this research, real input data are taken into account for each unit in order to provide
more realistic results. A real electricity price considering a ToU tariff is used as energy
price. The electricity consumption of a smart office is used for the demand. The stochastic
solar energy generation is used to for renewable energy generation. As for renewable
energy sources, the 3.0 kW PV installed system has a total area of 164m? and an efficiency
0f97%. The battery storage device has a capacity of 3.8kWh, with an initial SOC of 3.0kWh
and a minimum SOC of1.5kWh. It charges and discharges at a rate of1.0kW, with an
efficiency of 97%. This setup ensures that the battery can store surplus energy from the
renewable sources and supply it during periods of high demand or low generation. Finally,
the maximum power generated from the grid during period t is chosen to be 5 kW.
Cpy(t), and CH5" (t) are set at 0.05 $ /KWh as maintenance cost. The cost of the electricity
sold to the national grid is 0.80 $ /KWh and the cost of generated power by the grid is
determined in ToU Table 1.

NUMERICAL RESULTS

The case study is a typical university lecturer’s office. As mentioned before, PV panels
along with grid connection is used to supply the building demands. Figure 2 shows the
electrical demand of the office and its obtained obtained by means of embedded smart
meters in the system. A PV with 3 kW capacity is considered and the battery capacity is
3.8 kW, respectively. The parameters of the office components and the ToU price tariffs
are given in table IT and I. The state of charge of BESS is 0.2pu. The Differential evolution
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algorithm is implemented using PYTHON 3.10 on an H.P Pavilion Laptop, 1.80 GHZ,
Intel 17 processor, 16 GB RAM with WINDOWS 10 operating system.

As shown in Fig. 4, in scenario I, the office primarily relies on the conventional grid system
to supply energy to the smart office, thereby increasing system efficiency. In other words,
greater electricity generation from conventional grid sources promotes sustainability in
energy utilization, enhances the resilience of the hybrid, as customers rely on it to power
their electrical appliances. However, on this selected da i.e. 0.00 a.m. to 23.00 p.m., the
smart home draws electricity from the traditional grid due to lower electricity prices on
this selected day due to gas price that is fixed and cheaper. Overall, the significant
advantage of conventional grid over photovoltaic system in this scenario is its ability to
generate energy at a reduced gas price which is fixed, reliable power supply, grid stability
and reduced energy losses compared to PV systems that are stochastic in nature. (Hasan.
M., et al.2021)

Scenario 1

Legend
B Grid supply
B Battery demand

B rlexible and non-flexible load demand

Energy

[KW./h]
N .

Figure 4: Electricity equilibrium of the microgrid for scenario I grid supply only

Figure 5 shows the scattered obtained using the proposed Differential evolution algorithm
in scenariol. Differential evolution is utilized to tackle the single-objective optimization
problem when a conventional grid integrated with a smart office. The population size,
maximum number of generations, crossover probability, and mutation probability have
been set to 50, 50, 0.9, and 0.2, respectively, for the three scenarios aiming at cost
minimization. The results depicted in Figure 5 indicate that scenariol exhibits the highest
cost by 92% and 89% in comparison to scenarios IlandIIl, respectively, this analysis
demonstrates that differential evolution algorithm achieves the maximum cost
expenditure by customers when compared with the other scenarios, attributed to its
fluctuation. (Hasan. M., et al.2021)
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As depicted in Fig.
6, in scenarioll, the
hybrid energy
primarily relies on
the photovoltaic
energy system to
supply energy to
the smart office,
thereby increasing
system efficiency.
In other words,
greater electricity

generation from PV energy sources promotes sustainability in energy utilization,

enhances the resilience of the hybrid energy system, reduces dependence on the

conventional grid, and enables the smart office to sell surplus energy to the upstream grid

during peak price hours. However, between 6a.m. to 6p.m., the smart office draws

electricity from the traditional grid due to lower electricity prices during this time interval

and the stochastic nature of solar energy generation. (Hasan. M., et al.2021). Overall, the

significant advantage of the photovoltaic system over the traditional grid in this scenario

is its ability to exchange energy with the main grid, resulting inconsiderable revenue.

Figure 4: Electricity equilibrium of the microgrid for scenario /I with P} and

grid supply.
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Figure 7 depicts the scattered plot of scenario II, showcasing the minimum fuel cost
achieved using the proposed algorithm. The performance enhancement of this scenario
can be observed in terms of cost, attributed to the integration of a PV generation system.
The effectiveness of differential evolution algorithm verified using the test system, shows
that the algorithm can find better solutions in terms of the objective function value,
convergence speed and the number of solutions with lower objective functions compared
with other scenarios.

. -
0.9 - L i -
i - . - bl -
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- s
- - - *
0.8 b L
*i - - - -
- i
-k " - *-n-** **i -
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Figure 5: scattered plot generated by Scenario I/

nari L1l

Figure 6: Electricity equilibrium of the microgrid for scenario [I[[ with PV, BESS

and grid supply

This scenario suggests that the integration of a PV generation system yields positive
effects when accompanied by appropriate energy management strategies that satisfy
various constraints, as indicated by the scenario study. Figure 8 designs the electricity
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balance of the hybrid energy system with a battery energy storage device integrated into
it. It is evident that the PV and battery energy storage device operate at their maximum
capacities for most of the hours, providing almost 75% of the total smart home energy
consumption. This synergy between the PV and electricity storage device is advantageous,
especially considering electricity prices in this scenario. Surplus energy is sold back to the
grid during morning hours and late at night, as energy is stored during these off-cpeak
periods and then exported to the main grid during peak price periods. (Raman. S.,et al.,
2020).

This suggests that during on-peak periods, the smart office can meet its load demands by
utilizing the battery energy storage instead of relying on purchases from the traditional
grid. To mitigate the additional costs associated with battery degradation, the hybrid
energy system endeavors to minimize the duration of discharging mode for the battery.
Additionally, it is observed that during the early morning hours, the energy management
system opts to purchase power from the upstream grid due to the low-price market
conditions and uncertainties arising from the distributed energy resource PVunit. Late in
the night (8p.m, 9p.m, 10.p.m, 11.p.m and 12.am) the hybrid system used mixed energy
(battery discharge and conventional grid) to supply to the office.

Figure 9 illustrates the scattered plot of the proposed hybrid energy system for scenario
III. It 1s evident that, thanks to the proposed meta-heuristic algorithm, the second-best
solution point among all test combinations. This scenario provides a solution very close to
the best compromise solution. Furthermore, scenario III highlights that the integration
of an energy storage device (BESS) into the electrical grid yields positive effects when
accompanied by appropriate energy management strategies that satisfy various
constraints outlined in the scenario mathematical model. It is observed that during
periods when the battery energy storage device is charging, its state of charge (SOC) is
relatively high, and when the electricity price for discharging is lower than that from the
upstream grid, the BESS discharges its energy, thereby benefiting from the electrical
energy stored during off-peak period. .(Rahman. S.,et al., 2020)

Figure 7: scattered
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serves as a reference point for comparison. Scenario II exhibits 90% reduction in energy
costs compared to Scenario I. This reduction in energy costs in the scenarios indicates that
consumers benefit financially from selling excess power to the grid after satisfying their
own energy needs. This aspect highlights the economic advantage of integrating
renewable energy resources in energy management system. It is evident that scenario 111
exhibits the second-best performance in terms of cost. However, the integration of BESS
leads to higher cost when compare with scenario I. Despite this, the cost and result is
reasonable, thus validating the effectiveness of the hybrid energy system management.
(IEEE Transactions on Smart Grid)

TABLE [11. ENERGY COST OF CASE SCENARIOS.

ARIC R OST @ /Da
I(GRID) 3.812
II(GRID& PV) 0.301
II(GRID, PV&BESS) 0.400

Since energy cost is of great importance to consumers, daily saving ratio of scenario I in
comparison to case I i.e. as the worst case in terms of energy cost can be estimated from
Tablelll. It is seen that more than 92% reduction in cost can be achieved in scenario II by
using energy PV and enabling electricity exchange with the conventional grid. Electrical
energy production using PV in scenario IIrevenue is achieved, and this is because of the
fact that purchasing this amount of energy from the upstream grid costs much
more.(Rahman. S.,et al., 2020)

Also, scenario III show that the incorporation of BESS into electrical grid has positive
effects if there is an appropriate energy management with satisfying some constraints
according to the case scenario. So we can analyze that in the periods when BESS is
operation at smart office with an SOC approximately high and their discharging electricity
price is lower than the electricity price buy it from the conventional grid, the BESS
discharge their energy by benefiting from the electrical energy previously stored.
Therefore, we can deduce that all the demand of the smart office, including flexible and
non-flexible appliances load, battery storage charge, are covered with an optimized energy
management between the production sources due the implemented models by considering
the costs and the several mathematical constraints.

CONCLUSION

A new perspective based on differential evolution algorithm is proposed in this research
work for coherent solution of optimal energy management of PV and BESS in a typical
university office. Different attributes and constraints such as power demands, capacity
limits of units and other operational constraints are taken into consideration in the
formulation of energy management problem. The efficacy of the differential evolution
algorithm was established using differential evolution algorithm codes. Differential
evolution algorithm, it was realized, can proffer better solutions in terms of the objective
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function value, convergence speed and actual number solutions for the case scenarios. A
scenario-based stochastic approach was developed in this sophisticated energy
architecture in order to deal with the uncertain nature of PV, and actual ToU tariffs for
electricity prices were evaluated. Various case studies were carried out considering
diverse scenarios to validate the effectiveness of the proposed concept.

As a result, it is found that the objective costs get the highest value in the Base Case
(using conventional grid to supply the smart office) which has no PV sources and BESS.
On the other hand, the cost was reduced by nearly 92% with PV integration while 90%
reduction was achieved considering both PV andBESS. The simulation results show the
global optimum solution for many consecutive days with important reduction of execution
time and by achieving a significant energy cost savings of the considered scenarios.As a
future work, the presented methodology can be extended with taking the advantage of the
energy reduction capabilities of curtail able loads by demand side management strategies.
Also, different types of energy conversion system assets can be considered. Moreover, the
multi-objective system modeling can be adopted existing proposed architecture for
analyzing the performance of this optimization algorithm from different aspects.

RECOMENDATIONS

The following recommendations have been suggested for the improvement of modeling
and optimization of energy management in smart building, considering PV, BESS and its
benefits on the energy sector.

e To eliminate rigorous calculations, slower convergence and infeasible result (s)
involved, genetic algorithm is a powerful optimization tool for finding solutions of
optimization of energy management decision variables (cost functions, power
etc.).It gives the exact solution of micro-grid energy management problems which
converge as fast as possible as exemplified in this research study. Although,
particle swarm optimization, ant bee colony and market exchange algorithms
were also applied in some literatures to solve the optimization of energy
management problems in smart buildings but the effectiveness of the above
named algorithms for larger micro-grids which interact with the conventional
grid is not known yet. The reason is that the calculations involved are difficult to
manipulate efficiently despite it having the least objective function value.
Conversely, chaotic improved harmony search algorithm, biogeography based
optimization algorithm, stochastic fractal search algorithm etc. usages are
limited to a few problems which make it rather impermissible to use in this kind
of research since it falls into local optimum in high-dimensional space, besides, it
also have a low convergence rate characteristic in the iterative process. Results
obtained by artificial bee colony are often associated with large diversity and in
most situations, convergence to either optimal or near optimal solution is rather
difficult.

e In addition, the research therefore recommends that not only should this
proposed method (differential evolution algorithm) be included in the curriculum
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for higher programs, but also be applied when solving modeling and optimization
of energy management in smart building problems. Doing this will assist research
students in accomplishing desired result (s), eliminate rigorous calculation
processes and obtain optimal converging solutions. The financial evaluation
should be enhanced by including certain factors such as potential loss of heat
during generation in these technologies and reduce maintenance on the operating

device.
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