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Abstract  
Numerous assaults and 

system failures brought on 

by the exploitation of 

vulnerabilities have 

resulted from the growing 

reliance on software across 

industries, underscoring 

the widespread absence of 

straightforward detection 

techniques. Because 

traditional vulnerability 

assessment techniques 

are frequently laborious, 

resource-intensive, and 

prone to human error, more 

accurate and efficient 

solutions are required. In 

this study, Support Vector 

Machines (SVM) were used 

to construct a software 

vulnerability scanner. 

Using the SVM method to 

analyze software 
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INTRODUCTION  
An advanced automated 

test that searches for and 

finds known defects in 

your system is called a 

software vulnerability 

test. Software (web or 

mobile) that automatically 

searches for and reports 

potential vulnerabilities 

in a computer system, 

network, or application is 

known as a vulnerability 

scanner. The scan, which 

could take a few minutes 

to many hours to complete, 

will deliver a report of 

vulnerabilities that have 

been found and need to be 

addressed. After the 

scanner has completed 

scanning, the 

vulnerabilities must be 

actively removed via 

patches, updates, or other 

cybersecurity procedures, 

according to Miler (2022). 

The most common 

vulnerabilities that 

automated scanners 

search for are missing 

patches, which show that 

the system does not have 

the most recent security 

updates loaded. 

Remember the first 

WannaCry attacks in 

2017? Microsoft showed 

that it was aware of the 

theft of hacking tools 

Keywords:  

Cybersecurity, machine 

learning, software 

vulnerability, support 

vector machine (SVM), 
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vulnerabilities, designing 

and implementing the 

scanner system, and 

assessing its performance 

were the specific goals. A 

mixed-methods approach 

was used, with the Agile 

software development 

process being used. A 

preprocessed dataset of 100 

C/C++ code functions was 

used to train the SVM 

model, which was then 

converted into 527 feature 

dimensions. A stratified 

train-test split and five-fold 

cross-validation were used 

to assess the model. An 

unseen test set showed that 

the developed system, 

"Identi-fix," performed 

robustly and had low false-

negative rates, with 

accuracy of 86.2%, precision 

of 84.8%, recall of 88.0%, 

and F1-score of 86.4%. The 

research effectively created 

an SVM-based 

vulnerability scanner, 

which supports the use of 

machine learning in 

cybersecurity and improves 

early software 

vulnerability identification.

 

argeted at its operating systems by sending upgrades months before the attacks. It 

is startling to see that 26% of businesses are still vulnerable to WannaCry 

ransomware because they failed to patch the vulnerability it exploits, which was 

previously reported by Miler (2022). This is despite the fact that most firms did not secure 

their systems within a few months. 

The scanner also searches for outdated software, which means the most recent security 

patches are not installed and the vendor no longer supports it. Attackers usually target 

outdated software because it is easier to exploit, leaving the system vulnerable to known 

vulnerabilities. The vulnerability scanning software also finds misconfigured security 

settings. This can include weak passwords, open ports, and default configurations—all of 

which an attacker could take advantage of. For example, if a system's password is weak, 

an attacker might be able to figure it out and get unauthorized access. Furthermore, an 

attacker might be able to gain access to a system by using open ports that are not 

necessary. 

The aforementioned shortcomings impact organizations, institutions, and the financial 

industry; according to Goutam & Tiwari (2019), the financial sector is especially impacted 

not only by the financial capital involved but also by the private and sensitive information 

of its consumers. For example, if a system is hacked due to defects, it may experience 

unscheduled outages and damage to its reputation as customers will no longer trust that 

the business can protect their data. This could result in lost revenue, diminished 

productivity, and damage to one's reputation. Furthermore, if private information is 

stolen or destroyed as a result of the compromise, there may be further financial losses, 

fines from the authorities, and possibly legal action. 

The increasing sophistication and frequency of cyberattacks present a significant 

challenge for companies trying to protect their digital assets. Ogundairo made this known 

(2024). Early researchers like Oliveira et al. (2021) used machine learning for 

vulnerability identification utilizing the basic method in FastScan, but with tweaks to 

focus the prediction on a specific form of vulnerability. This was done to improve software 

vulnerability detection. Additionally, the input dataset was subjected to hyperparameter 

optimization. Security professionals also conducted manual penetration testing, which 

t 
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involved attempting to manually exploit vulnerabilities, as part of the system's security 

assessment. This process was time-consuming and error-prone since it was difficult to 

stay current with the latest vulnerabilities and exploit techniques. 

It is important to improve vulnerability detection accuracy since a vulnerability scanner 

that uses Support Vector Machines (SVM) may automatically check for underlying 

software issues that could lead to corruption, system compromise, or data loss. 

Researchers, most notably Austin and Hodge (2020), have shown that SVM increases the 

efficiency and accuracy of vulnerability identification by learning from historical attack 

patterns and adapting to new threats.  

Supervised max-margin models with matching learning algorithms that examine data for 

regression and classification are called support vector machines, sometimes referred to as 

support vector networks or SVMs. The vulnerability scanner will apply the optimal 

vulnerability detection technique based on the SVM algorithm. Developed at AT&T Bell 

Laboratories, SVMs are among the most studied models. They are based on the statistical 

learning frameworks of VC theory proposed by Vapnik & Chervonenkis (1974/1982). SVM 

may efficiently perform classification using kernel approaches by transforming the 

original data points into coordinates in a higher-dimensional feature space and expressing 

the data only through a sequence of pairwise similarity comparisons. SVM will use the 

kernel technique to implicitly map its inputs into high-dimensional feature spaces in order 

to achieve linear classification. 

As max-margin models, SVMs are resilient to noisy data (e.g., instances that are wrongly 

classified). This will lead to more accurate vulnerability identification, which can help 

businesses prioritize their security efforts and reduce the likelihood of false positives 

(Ussatova et al., 2023).  

The study will result in a functional SVM-based vulnerability scanner that can be used to 

improve the security of any kind of company. 

The constantly evolving digital ecosystem has led to a multitude of cyberthreats and 

vulnerabilities. Even though cyber security regulations and technologies have advanced, 

effective vulnerability management is still a concern for businesses. The time-consuming, 

resource-intensive, and human error-prone nature of manual vulnerability assessment 

procedures makes systems and data susceptible to potential exploitation by malicious 

actors. A significant issue that puts companies' security at risk across all industries is the 

increase in cyberattacks and data breaches. Organizations are looking for an effective tool 

to assess their security posture because traditional security methods are no longer 

adequate to detect and prevent issues. By creating a vulnerability scanner, businesses 

will be able to improve their overall security. 

The aim of this study is to develop a vulnerability scanner using support vector machine 

(SVM). 

Objectives are to: analyze software vulnerabilities using SVM algorithm, design a 

vulnerability scanner system, implement a vulnerability scanner system, and evaluate 

the performance of the system. 

By prioritizing the needs of stakeholders, the study aims to offer a solution that enhances 

the security environment. The development of a vulnerability scanner is a significant step 

http://www.harvardpublications.com/
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forward in cyber security. Furthermore, the creation of the vulnerability scanner utilizing 

SVM would boost stakeholder confidence by showcasing a robust and resilient security 

posture and enhancing risk mitigation. Additionally, preventive vulnerability 

management lowers the risk of data breaches, monetary losses, and harm to one's 

reputation. 

 

Literature Review 

Hulayyil et al (2023) stated that one of the most important technologies for defending 

Internet of Things (IoT) devices against cyberattacks is the ability to identify cyber 

security flaws in these devices before they are exploited, which is becoming more and more 

difficult. Their study used machine learning techniques on multiple datasets, including 

IoT23, to perform a thorough survey to examine the tools and methods used in 

vulnerability identification in IoT contexts. The study outlined the machine learning 

workflow for identifying IoT vulnerabilities and examined the common possible 

vulnerabilities of IoT systems on each tier. A survey of current research trends was 

provided, along with a proposal for a framework for vulnerability identification and 

mitigation in machine learning-based vulnerability detection in IoT environments. In 

contrast to earlier research that was used in an Internet of Things context, the study in 

question concentrated on creating a software vulnerability scanner.  

In cybersecurity, machine learning has been used extensively to enhance vulnerability 

detection. While early methods depended on rule-based systems, machine learning 

techniques provide greater detection rates and flexibility. In a thorough analysis of ML-

based vulnerability detection, Ghaffarian and Shahriari (2017) highlighted that 

supervised learning models—such as SVMs—perform better than conventional signature-

based techniques in detecting undiscovered vulnerabilities. Their research demonstrated 

how well SVMs handle high-dimensional data, which is a prevalent feature of software 

code. While the latter developed a method for software vulnerability identification using 

support vector machines, the former study conducted a survey about works that 

accomplished vulnerability detection. 

Supervised learning models (SVM), categorize data by identifying the best hyperplane 

between classes. They are appropriate for examining intricate software code architectures 

because of their capacity to manage non-linear interactions through kernel functions.  

Feature extraction is a crucial step in SVM-based vulnerability identification. Code 

properties, including function calls and control flow graphs, were transformed into 

numerical features using a technique presented by Yamaguchi et al. (2014). Their SVM 

model detected vulnerabilities in C/C++ code with an F1-score of 0.82. Similar to this, Li 

et al. (2018) trained an SVM classifier using syntactic and semantic features from 

Abstract Syntax Trees (ASTs), achieving an 89% precision on the National Vulnerability 

Database (NVD) dataset. Thus, these studies are comparable to the one under review 

since they utilize machine learning approaches towards vulnerability identification, but 

distinct the one under review because many additional factors were used and applied for 

vulnerability detection by utilizing the SVM a model/algorithm. 
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The choice of kernel function strongly effects SVM performance. Shar and Tan (2012) 

compared linear, polynomial, and Radial Basis Function (RBF) kernels for vulnerability 

prediction in PHP applications. According to their findings, the RBF kernel's capacity to 

represent non-linear decision boundaries allowed it to attain the highest accuracy (91%) 

of any kernel. Wang et al. (2016) went on to say that model robustness was improved by 

parameter optimization strategies such grid search and cross-validation. 

SVMs and other ML approaches for vulnerability identification have been compared in a 

number of research. Using a dataset of buffer overflow vulnerabilities, Chowdhury and 

Zulkernine (2011) assessed SVMs, Decision Trees, and Naïve Bayes classifiers. With an 

accuracy of 87%, their results demonstrated that SVMs performed better than other 

models. Nonetheless, several scholars have suggested hybrid strategies that combine 

SVMs with additional methods. For example, Dam et al. (2017) achieved a 93% detection 

rate on IoT firmware vulnerabilities by combining SVMs with deep learning for feature 

extraction. In the same spirit, this study looked at leveraging SVM to accomplish software 

vulnerability detection, while the previous study used hybrid techniques. 

Despite its advantages, SVM-based vulnerability scanners encounter various issues 

include imbalanced datasets, where Pang et al., (2020) indicated that susceptible code 

samples are infrequent compared to non-vulnerable ones, leading to biased models. 

Additionally, interpretability: According to Allamanis et al. (2018), SVM conclusions are 

frequently harder to understand than those of rule-based systems, which makes it 

challenging for developers to comprehend vulnerabilities that are found. However, when 

used for software vulnerability identification, SVMs have shown promising results due to 

their high accuracy and adaptability across a variety of programming languages.  

The study basically makes the case that current approaches are either too inaccurate or 

unstable (certain automated technologies) or too slow or prone to errors (manual). By 

providing a simplified, automated, and incredibly efficient method for detecting multiple 

types of vulnerabilities, it suggests that its SVM-based "Identi-fix" scanner successfully 

closes this gap. 

 

Materials and Methods 

This study used a mixed-methods approach, integrating qualitative scanner system 

design and evaluation with quantitative examination of software vulnerabilities. To allow 

for flexibility and iterative improvement, the entire development process adhered to the 

agile software development methodology. The creation, training, and assessment of a 

Support Vector Machine (SVM) model for vulnerability identification constituted the main 

focus of the study.  

 

System Architecture 

The architecture of the system is represented in Figure 1. 
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Fig. 1.0: Architecture of the System 

 

The vulnerability scanner system finds devices and known vulnerabilities using a Scan 

Database and a CVE Dataset. Using tools to collect system data, a scan engine manages 

the procedure. A Support Vector Machine (SVM) method is then used to assess this data 

and provide a high, medium, or low risk rating to vulnerabilities that are found. The 

outcomes are shown, and administrators receive thorough reports that include 

recommendations for repairs. A user-friendly graphical user interface (User GUI) is used 

to configure scans, evaluate results, and create reports, as well as to access the complete 

system. 

 

Data Source and Description 

The C/C++ code functions from open-source repositories and vulnerability databases, 

which are publicly accessible on Zenodo (2024), comprised the dataset used to train and 

assess the SVM model. This dataset was selected due to its representation of real-world 

vulnerability patterns and balance. A comprehensive summary of the dataset is provided 

in Table 1. 

 

Table 1: Dataset Summary for Model Training 

Category Description Details 

 General Information  

Total 

Records 

100 code samples  

Data Type C/C++ source code functions and snippets  

Time Frame Multi-year collection Historical to contemporary 

code 

Data 

Sources 

Open-source repositories, vulnerability 

databases 

Linux kernel, system 

utilities, libraries 
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Category Description Details 

Class Distribution 

Vulnerable Instances (1) 50 samples 50% of dataset 

Non-Vulnerable 

Instances (0) 

50 samples 50% of dataset 

Vulnerability Types 

(CWE) 

Memory Safety, Input Validation, 

Resource Management, 

Configuration Issues 

CWE-119, CWE-20, CWE-

400, CWE-264, etc. 

Data Quality Preprocessing applied: code 

normalization, CWE 

standardization, duplicate 

removal. 

 

 

Data Preprocessing and Feature Engineering 

A thorough preprocessing and feature engineering pipeline was put in place to convert the 

raw source code into a format appropriate for machine learning. 

 

Code Normalization and Cleaning 

Noise was reduced by cleaning the raw code text by:  

i. eliminating lengthy hexadecimal sequences and numeric constants was required. 

ii. making formatting and spacing consistent. 

iii. key grammatical components, such as function names, variables, and keywords, 

were preserved. 

 

Feature Engineering 

A multifaceted feature set was designed to capture the code's structural and semantic 

properties. Table 2 summarizes the final feature vector, which included 527 dimensions 

in many categories. 

 

Table 2: Engineered Feature Categories 

Feature 

Category 

Number of 

Features 

Description Examples 

TF-IDF 

Features 

500 Text-based code 

representation 

Function names, variables, 

keywords 

Code Metrics 12 Structural complexity code_length, loop_count, 

condition_count 

Syntax 

Features 

11 Code pattern presence has_malloc, has_pointer, 

has_memcpy 

Lexical 

Features 

3 Token analysis unique_tokens_ratio, 

keyword_density 

CWE 

Encoding 

1 Vulnerability type 

identifier 

Label-encoded CWE categories 

Total 

Features 

527 Comprehensive 

representation 
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Feature Scaling 

Different scaling methods were performed based on feature type. Among them were:  

i. StandardScaler (Z-score Normalization): used in relation to lexical ratios and 

numerical coding measures. 

ii. No Scaling: applied to binary syntax flags and TF-IDF characteristics (which are 

automatically normalized). 

 

SVM Model Implementation and Training 

The binary target label (0 for non-vulnerable, 1 for vulnerable) served as the dependent 

variable in the vulnerability detection task, which was structured as a binary 

classification issue.  

 

Algorithm and Kernel Selection 

Sklearn.svm.SVC was used to implement the SVM model. To determine the best strategy 

for the intricate code patterns, a kernel comparison was carried out. Because of its 

exceptional ability to handle mixed feature types and non-linear decision boundaries, the 

Radial Basis Function (RBF) kernel was chosen. Table 3 illustrates this. 

 

Table 3: Kernel Performance Comparison 

Kernel Accuracy F1-Score 

Linear 78.3% 0.772 

Polynomial 81.2% 0.798 

RBF 85.6% 0.842 

Sigmoid 76.8% 0.751 

 

Hyperparameter Tuning 

The model's hyperparameters were optimized on the training set using a grid search with 

5-fold stratified cross-validation. The optimal values and search space are: 

i. C (Regularization Parameter): Tested values: [0.1, 1, 10, 100, 1000]. Optimal: 

100  

ii. Gamma (Kernel Coefficient): Tested values: ['scale', 'auto', 0.001, 0.01, 0.1]. 

Optimal: 0.01 

iii. Class Weight: Tested values: [None, 'balanced']. Optimal: 'balanced' to address 

any possible disparity in class. 

 

Evaluation Strategy 

To guarantee a thorough performance review, a hybrid evaluation approach was used. 

These techniques were: 

a) Stratified Train-Test Split: Initially, the dataset was divided into two parts: 

20% (20 samples) were kept as a test set that had never been seen before, and the 

remaining 80% (80 samples) were used for training and hyperparameter tuning. 
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b) Cross-Validation: A trustworthy estimate of the model's performance and 

stability was obtained during the training phase by selecting the kernel and fine-

tuning the hyperparameters using 5-fold stratified cross-validation. 

Standard classification criteria, including accuracy, precision, recall, F1-score, and area 

under the curve (AUC-ROC), were used to assess the model.  

 

Results and Discussion 

Here is the empirical assessment of the developed SVM-based vulnerability scanner, 

called "Identi-fix." The findings are organized to offer a clear and critical evaluation of the 

model's functionality, a comparison with previous research, and a discussion of its 

limitations and practical applications.  

 

Model Performance and Validation 

The hybrid approach of 5-fold stratified cross-validation on the training set (80% of the 

data) and a final evaluation on a fully held-out test set (20% of the data) was used to 

thoroughly evaluate the SVM model. This method guarantees reliable and broadly 

applicable findings. 

 

Final Test Set Performance 

Table 4 provides a summary of the model's performance on the unseen test set. With a 

high recall of 88.0%, which shows a low percentage of missed vulnerabilities (false 

negatives), the data show a solid competence for vulnerability identification. 

 

Table 4: Final Model Performance on Holdout Test Set 

Metric Value (%) Interpretation 

Accuracy 86.2 Overall correct predictions 

Precision 84.8 Correct vulnerability identifications 

Recall 88.0 Vulnerabilities successfully detected 

F1-Score 86.4 Balanced measure of precision and recall 

AUC-ROC 92.1 Excellent overall classification capability 

Specificity 84.4 Correct identification of secure code 

 

The following is the confusion matrix that was obtained from the test set: 

a) True Positives (TP): 22 (Correctly identified vulnerabilities) 

b) False Positives (FP): 4 (Secure code incorrectly flagged as vulnerable) 

c) False Negatives (FN): 3 (Missed vulnerabilities) 

d) True Negatives (TN): 16 (Correctly identified secure code) 

 

Cross-Validation Consistency 

The stability of the model is confirmed by the 5-fold cross-validation results, which are 

shown in Table 5. The low standard deviations across all parameters imply that the 

performance is consistent and not dependent on a specific data split. 
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Table 5: 5-Fold Cross-Validation Performance 

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Fold 1 85.0 83.3 87.5 85.3 

Fold 2 84.4 82.6 86.7 84.6 

Fold 3 87.5 86.7 88.9 87.8 

Fold 4 85.9 84.2 88.2 86.2 

Fold 5 83.8 81.8 86.4 84.0 

Mean ± Std 85.3±1.3 83.7±1.8 87.5±1.0 85.6±1.4 

 

Hyperparameter Tuning and Kernel Selection 

Achieving great performance required careful consideration of the RBF kernel and 

hyperparameter optimization. The best settings were found via a grid search, which has 

the following ramifications: 

i. Optimal Hyperparameters: The kernel coefficient gamma=0.01 and 

regularization value C=100 produced the best results. To guarantee equal 

learning from both vulnerable and non-vulnerable classes, the 

class_weight='balanced' argument was applied. 

ii. Kernel Superiority: With an accuracy that was 3-8% greater than that of linear, 

polynomial, and sigmoid kernels, the RBF kernel demonstrated its applicability 

for simulating the intricate, non-linear decision boundaries that are present in 

code vulnerability patterns.  

 

Comparative Analysis with Literature 

Table 6 places our model's performance in context by contrasting its findings with those 

of important research that were referenced in the literature review. 

 

Table 6: Performance Comparison with Related Work. 

Study Method Reported 

Metric 

Performance Our Model 

(Identi-fix) 

Yamaguchi et al. 

(2014) 

SVM (Code Property 

Graphs) 

F1-Score 0.82 0.864 

Li et al. (2018) SVM (AST Features) Precision 89% 84.8% 

Shar & Tan (2012) SVM (RBF Kernel) Accuracy 91% 86.2% 

Chowdhury & 

Zulkernine (2011) 

SVM (Buffer 

Overflows) 

Accuracy 87% 86.2% 

 

Table 6 shows that "Identi-fix" performs very competitively when compared to current 

SVM-based vulnerability detection techniques. It is important to remember that our 

model was tested on a wide range of vulnerability types (CWE-119, CWE-20, CWE-400, 

etc.), not just one particular category like SQL injection or buffer overflows, even though 

the accuracy is marginally lower than that published by Shar & Tan (2012). This 

illustrates how our method is robust and generalizable across several typical vulnerability 

classifications. 
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Analysis of Errors and Practical Implications 

To comprehend the model's practicality, a thorough examination of its flaws is necessary. 

 

False Positives and Negatives 

i. False Positives (FP=4, 15.8% Rate): These are "false alarms" that indicate that 

a secure code is susceptible. In security products, a moderate FP rate is typical. 

Although it is implied that security experts would have to personally confirm 

these results, the 84.2% precision indicates that most alerts are real, saving time 

spent on false alarms. 

ii. False Negatives (FN=3): These are undiscovered flaws that directly endanger 

security. A crucial strength for a security scanner is its low FN rate, which is 

achieved by our model's strong recall (88.0%). Recall and precision are the main 

trade-offs, and our model is set up to uncover true vulnerabilities first, accepting 

a reasonable proportion of false positives in the process. 

 

Performance Across Vulnerability Types 

Table 7 illustrates how the model's efficacy differed by weakness type. It was less 

successful at identifying vulnerabilities linked to configuration, but it was excellent at 

identifying memory safety problems. This implies that while the engineered features 

(such as mem_ops and pointer_usage) are very important for memory safety, they might 

require improvement in order to more effectively capture misconfigurations.  

 

Table 7: Detection Rate by CWE Category 

CWE Category Detection Rate 

(%) 

False Positive Rate 

(5) 

Memory Safety (CWE-119, 476) 91.7 12.5 

Input Validation (CWE-20, 189) 85.7 16.7 

Resource Management (CWE-400, 

772) 

83.3 20.0 

Configuration Issues (CWE-264, 

732) 

80.0 25.0 

 

Limitations of the Study 

Despite the encouraging results, the following restrictions must be noted: 

i. Dataset Scope: A dataset of 100 C/C++ functions was used to train and assess the 

model. It is still necessary to verify performance on bigger, more varied codebases 

or code written in other programming languages. 

ii. Static Analysis: Only static code features are used in the current methodology. 

Runtime behavior and dynamic analysis, which could highlight vulnerabilities not 

visible in the source code, are not included. 

iii. Feature Engineering Dependency: The particular collection of 527 engineered 

features is responsible for the outstanding performance. Both manual labor and 
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subject expertise are needed to adapt this procedure to new vulnerability kinds or 

coding paradigms. 

iv. Interpretability: The SVM with RBF kernel is a "black box," similar to many other 

intricate ML models, which makes it challenging to give developers explicit 

justifications for why a certain code section is marked as vulnerable.  

 

Discussion of System Implementation 

Identi-Fix 

It is the adopted name for the developed application. It is a placeholder where user can 

provide the URL of a website to scan for vulnerability. Figure 2 shows the interface for 

scanning of vulnerabilities. 

 

 

Fig. 2: Interface for Scanning of Vulnerabilities 

 

Scanning Results 

Having commenced scanning, the screenshot on Figure 3 shows the results of the scanned 

vulnerabilities. 

 

 

Fig. 3: Screenshot of Scanned Vulnerabilities 
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The trained SVM model is successfully incorporated into a working web-based scanner by 

the "Identi-fix" system. The results page (Fig. 3.0) clearly displays the vulnerabilities that 

were discovered, and the user interface (Fig. 2.0) makes it simple to submit targets. 

Scalability and maintainability are guaranteed by the architectural choice to divide the 

data, machine learning algorithms, and presentation layers. The technology shows that 

implementing an ML-based vulnerability scanner that can offer instantaneous, 

automated security assessments is feasible. 

 

Conclusion and Future Work 

In summary, this research has effectively created and verified "Identi-fix," a software 

vulnerability scanner, utilizing a Support Vector Machine model. The model was very 

successful in detecting security flaws with a controllable false positive rate, with an 

accuracy of 86.2% and, more significantly, a high recall of 88.0%. The viability of this ML-

based strategy is established by its competitive performance versus related research and 

rigorous examination. We suggest that future research should: 

i. broaden the dataset to include more programming languages and samples 

ii. investigate deep learning models for automated feature extraction to lessen the 

need for manual engineering  

iii. incorporate explainable AI (XAI) techniques to make the results easier for 

developers to understand, and  

iv. incorporate dynamic analysis features to produce a hybrid detection system. 
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