

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

97

DEVELOPMENT OF A SOFTWARE

VULNERABILITY SCANNER USING

SUPPORT VECTOR MACHINES (SVM)

SAMUEL AWUNA KILE1; MARYAMU WANKHI

GARBA1; & JEREMIAH YUSUF BASSI2

1Department of Computer Science, University of

Maiduguri, Maiduguri, Borno State. 2Department of

Computer Engineering, Federal Polytechnic, N’yak,

Shendam, Plateau State.

Corresponding Author: awunkile2@gmail.com

DOI: https://doi.org/10.70382/hijcisr.v09i9.045

Abstract
Numerous assaults and

system failures brought on

by the exploitation of

vulnerabilities have

resulted from the growing

reliance on software across

industries, underscoring

the widespread absence of

straightforward detection

techniques. Because

traditional vulnerability

assessment techniques

are frequently laborious,

resource-intensive, and

prone to human error, more

accurate and efficient

solutions are required. In

this study, Support Vector

Machines (SVM) were used

to construct a software

vulnerability scanner.

Using the SVM method to

analyze software

September 30, 2025 Vol. 9 No. 9 E-ISSN 3027-0952 P-ISSN 3027-2033

International Journal of

CONVERGENT AND INFORMATICS SCIENCE RESEARCH (IJCISR)

www.harvardpublications.com

INTRODUCTION
An advanced automated

test that searches for and

finds known defects in

your system is called a

software vulnerability

test. Software (web or

mobile) that automatically

searches for and reports

potential vulnerabilities

in a computer system,

network, or application is

known as a vulnerability

scanner. The scan, which

could take a few minutes

to many hours to complete,

will deliver a report of

vulnerabilities that have

been found and need to be

addressed. After the

scanner has completed

scanning, the

vulnerabilities must be

actively removed via

patches, updates, or other

cybersecurity procedures,

according to Miler (2022).

The most common

vulnerabilities that

automated scanners

search for are missing

patches, which show that

the system does not have

the most recent security

updates loaded.

Remember the first

WannaCry attacks in

2017? Microsoft showed

that it was aware of the

theft of hacking tools

Keywords:

Cybersecurity, machine

learning, software

vulnerability, support

vector machine (SVM),

vulnerability scanner.

http://www.harvardpublications.com/
mailto:awunkile2@gmail.com
https://doi.org/10.70382/hijcisr.v09i9.045

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

98

vulnerabilities, designing

and implementing the

scanner system, and

assessing its performance

were the specific goals. A

mixed-methods approach

was used, with the Agile

software development

process being used. A

preprocessed dataset of 100

C/C++ code functions was

used to train the SVM

model, which was then

converted into 527 feature

dimensions. A stratified

train-test split and five-fold

cross-validation were used

to assess the model. An

unseen test set showed that

the developed system,

"Identi-fix," performed

robustly and had low false-

negative rates, with

accuracy of 86.2%, precision

of 84.8%, recall of 88.0%,

and F1-score of 86.4%. The

research effectively created

an SVM-based

vulnerability scanner,

which supports the use of

machine learning in

cybersecurity and improves

early software

vulnerability identification.

argeted at its operating systems by sending upgrades months before the attacks. It

is startling to see that 26% of businesses are still vulnerable to WannaCry

ransomware because they failed to patch the vulnerability it exploits, which was

previously reported by Miler (2022). This is despite the fact that most firms did not secure

their systems within a few months.

The scanner also searches for outdated software, which means the most recent security

patches are not installed and the vendor no longer supports it. Attackers usually target

outdated software because it is easier to exploit, leaving the system vulnerable to known

vulnerabilities. The vulnerability scanning software also finds misconfigured security

settings. This can include weak passwords, open ports, and default configurations—all of

which an attacker could take advantage of. For example, if a system's password is weak,

an attacker might be able to figure it out and get unauthorized access. Furthermore, an

attacker might be able to gain access to a system by using open ports that are not

necessary.

The aforementioned shortcomings impact organizations, institutions, and the financial

industry; according to Goutam & Tiwari (2019), the financial sector is especially impacted

not only by the financial capital involved but also by the private and sensitive information

of its consumers. For example, if a system is hacked due to defects, it may experience

unscheduled outages and damage to its reputation as customers will no longer trust that

the business can protect their data. This could result in lost revenue, diminished

productivity, and damage to one's reputation. Furthermore, if private information is

stolen or destroyed as a result of the compromise, there may be further financial losses,

fines from the authorities, and possibly legal action.

The increasing sophistication and frequency of cyberattacks present a significant

challenge for companies trying to protect their digital assets. Ogundairo made this known

(2024). Early researchers like Oliveira et al. (2021) used machine learning for

vulnerability identification utilizing the basic method in FastScan, but with tweaks to

focus the prediction on a specific form of vulnerability. This was done to improve software

vulnerability detection. Additionally, the input dataset was subjected to hyperparameter

optimization. Security professionals also conducted manual penetration testing, which

t

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

99

involved attempting to manually exploit vulnerabilities, as part of the system's security

assessment. This process was time-consuming and error-prone since it was difficult to

stay current with the latest vulnerabilities and exploit techniques.

It is important to improve vulnerability detection accuracy since a vulnerability scanner

that uses Support Vector Machines (SVM) may automatically check for underlying

software issues that could lead to corruption, system compromise, or data loss.

Researchers, most notably Austin and Hodge (2020), have shown that SVM increases the

efficiency and accuracy of vulnerability identification by learning from historical attack

patterns and adapting to new threats.

Supervised max-margin models with matching learning algorithms that examine data for

regression and classification are called support vector machines, sometimes referred to as

support vector networks or SVMs. The vulnerability scanner will apply the optimal

vulnerability detection technique based on the SVM algorithm. Developed at AT&T Bell

Laboratories, SVMs are among the most studied models. They are based on the statistical

learning frameworks of VC theory proposed by Vapnik & Chervonenkis (1974/1982). SVM

may efficiently perform classification using kernel approaches by transforming the

original data points into coordinates in a higher-dimensional feature space and expressing

the data only through a sequence of pairwise similarity comparisons. SVM will use the

kernel technique to implicitly map its inputs into high-dimensional feature spaces in order

to achieve linear classification.

As max-margin models, SVMs are resilient to noisy data (e.g., instances that are wrongly

classified). This will lead to more accurate vulnerability identification, which can help

businesses prioritize their security efforts and reduce the likelihood of false positives

(Ussatova et al., 2023).

The study will result in a functional SVM-based vulnerability scanner that can be used to

improve the security of any kind of company.

The constantly evolving digital ecosystem has led to a multitude of cyberthreats and

vulnerabilities. Even though cyber security regulations and technologies have advanced,

effective vulnerability management is still a concern for businesses. The time-consuming,

resource-intensive, and human error-prone nature of manual vulnerability assessment

procedures makes systems and data susceptible to potential exploitation by malicious

actors. A significant issue that puts companies' security at risk across all industries is the

increase in cyberattacks and data breaches. Organizations are looking for an effective tool

to assess their security posture because traditional security methods are no longer

adequate to detect and prevent issues. By creating a vulnerability scanner, businesses

will be able to improve their overall security.

The aim of this study is to develop a vulnerability scanner using support vector machine

(SVM).

Objectives are to: analyze software vulnerabilities using SVM algorithm, design a

vulnerability scanner system, implement a vulnerability scanner system, and evaluate

the performance of the system.

By prioritizing the needs of stakeholders, the study aims to offer a solution that enhances

the security environment. The development of a vulnerability scanner is a significant step

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

100

forward in cyber security. Furthermore, the creation of the vulnerability scanner utilizing

SVM would boost stakeholder confidence by showcasing a robust and resilient security

posture and enhancing risk mitigation. Additionally, preventive vulnerability

management lowers the risk of data breaches, monetary losses, and harm to one's

reputation.

Literature Review

Hulayyil et al (2023) stated that one of the most important technologies for defending

Internet of Things (IoT) devices against cyberattacks is the ability to identify cyber

security flaws in these devices before they are exploited, which is becoming more and more

difficult. Their study used machine learning techniques on multiple datasets, including

IoT23, to perform a thorough survey to examine the tools and methods used in

vulnerability identification in IoT contexts. The study outlined the machine learning

workflow for identifying IoT vulnerabilities and examined the common possible

vulnerabilities of IoT systems on each tier. A survey of current research trends was

provided, along with a proposal for a framework for vulnerability identification and

mitigation in machine learning-based vulnerability detection in IoT environments. In

contrast to earlier research that was used in an Internet of Things context, the study in

question concentrated on creating a software vulnerability scanner.

In cybersecurity, machine learning has been used extensively to enhance vulnerability

detection. While early methods depended on rule-based systems, machine learning

techniques provide greater detection rates and flexibility. In a thorough analysis of ML-

based vulnerability detection, Ghaffarian and Shahriari (2017) highlighted that

supervised learning models—such as SVMs—perform better than conventional signature-

based techniques in detecting undiscovered vulnerabilities. Their research demonstrated

how well SVMs handle high-dimensional data, which is a prevalent feature of software

code. While the latter developed a method for software vulnerability identification using

support vector machines, the former study conducted a survey about works that

accomplished vulnerability detection.

Supervised learning models (SVM), categorize data by identifying the best hyperplane

between classes. They are appropriate for examining intricate software code architectures

because of their capacity to manage non-linear interactions through kernel functions.

Feature extraction is a crucial step in SVM-based vulnerability identification. Code

properties, including function calls and control flow graphs, were transformed into

numerical features using a technique presented by Yamaguchi et al. (2014). Their SVM

model detected vulnerabilities in C/C++ code with an F1-score of 0.82. Similar to this, Li

et al. (2018) trained an SVM classifier using syntactic and semantic features from

Abstract Syntax Trees (ASTs), achieving an 89% precision on the National Vulnerability

Database (NVD) dataset. Thus, these studies are comparable to the one under review

since they utilize machine learning approaches towards vulnerability identification, but

distinct the one under review because many additional factors were used and applied for

vulnerability detection by utilizing the SVM a model/algorithm.

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

101

The choice of kernel function strongly effects SVM performance. Shar and Tan (2012)

compared linear, polynomial, and Radial Basis Function (RBF) kernels for vulnerability

prediction in PHP applications. According to their findings, the RBF kernel's capacity to

represent non-linear decision boundaries allowed it to attain the highest accuracy (91%)

of any kernel. Wang et al. (2016) went on to say that model robustness was improved by

parameter optimization strategies such grid search and cross-validation.

SVMs and other ML approaches for vulnerability identification have been compared in a

number of research. Using a dataset of buffer overflow vulnerabilities, Chowdhury and

Zulkernine (2011) assessed SVMs, Decision Trees, and Naïve Bayes classifiers. With an

accuracy of 87%, their results demonstrated that SVMs performed better than other

models. Nonetheless, several scholars have suggested hybrid strategies that combine

SVMs with additional methods. For example, Dam et al. (2017) achieved a 93% detection

rate on IoT firmware vulnerabilities by combining SVMs with deep learning for feature

extraction. In the same spirit, this study looked at leveraging SVM to accomplish software

vulnerability detection, while the previous study used hybrid techniques.

Despite its advantages, SVM-based vulnerability scanners encounter various issues

include imbalanced datasets, where Pang et al., (2020) indicated that susceptible code

samples are infrequent compared to non-vulnerable ones, leading to biased models.

Additionally, interpretability: According to Allamanis et al. (2018), SVM conclusions are

frequently harder to understand than those of rule-based systems, which makes it

challenging for developers to comprehend vulnerabilities that are found. However, when

used for software vulnerability identification, SVMs have shown promising results due to

their high accuracy and adaptability across a variety of programming languages.

The study basically makes the case that current approaches are either too inaccurate or

unstable (certain automated technologies) or too slow or prone to errors (manual). By

providing a simplified, automated, and incredibly efficient method for detecting multiple

types of vulnerabilities, it suggests that its SVM-based "Identi-fix" scanner successfully

closes this gap.

Materials and Methods

This study used a mixed-methods approach, integrating qualitative scanner system

design and evaluation with quantitative examination of software vulnerabilities. To allow

for flexibility and iterative improvement, the entire development process adhered to the

agile software development methodology. The creation, training, and assessment of a

Support Vector Machine (SVM) model for vulnerability identification constituted the main

focus of the study.

System Architecture

The architecture of the system is represented in Figure 1.

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

102

Fig. 1.0: Architecture of the System

The vulnerability scanner system finds devices and known vulnerabilities using a Scan

Database and a CVE Dataset. Using tools to collect system data, a scan engine manages

the procedure. A Support Vector Machine (SVM) method is then used to assess this data

and provide a high, medium, or low risk rating to vulnerabilities that are found. The

outcomes are shown, and administrators receive thorough reports that include

recommendations for repairs. A user-friendly graphical user interface (User GUI) is used

to configure scans, evaluate results, and create reports, as well as to access the complete

system.

Data Source and Description

The C/C++ code functions from open-source repositories and vulnerability databases,

which are publicly accessible on Zenodo (2024), comprised the dataset used to train and

assess the SVM model. This dataset was selected due to its representation of real-world

vulnerability patterns and balance. A comprehensive summary of the dataset is provided

in Table 1.

Table 1: Dataset Summary for Model Training

Category Description Details

 General Information

Total

Records

100 code samples

Data Type C/C++ source code functions and snippets

Time Frame Multi-year collection Historical to contemporary

code

Data

Sources

Open-source repositories, vulnerability

databases

Linux kernel, system

utilities, libraries

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

103

Category Description Details

Class Distribution

Vulnerable Instances (1) 50 samples 50% of dataset

Non-Vulnerable

Instances (0)

50 samples 50% of dataset

Vulnerability Types

(CWE)

Memory Safety, Input Validation,

Resource Management,

Configuration Issues

CWE-119, CWE-20, CWE-

400, CWE-264, etc.

Data Quality Preprocessing applied: code

normalization, CWE

standardization, duplicate

removal.

Data Preprocessing and Feature Engineering

A thorough preprocessing and feature engineering pipeline was put in place to convert the

raw source code into a format appropriate for machine learning.

Code Normalization and Cleaning

Noise was reduced by cleaning the raw code text by:

i. eliminating lengthy hexadecimal sequences and numeric constants was required.

ii. making formatting and spacing consistent.

iii. key grammatical components, such as function names, variables, and keywords,

were preserved.

Feature Engineering

A multifaceted feature set was designed to capture the code's structural and semantic

properties. Table 2 summarizes the final feature vector, which included 527 dimensions

in many categories.

Table 2: Engineered Feature Categories

Feature

Category

Number of

Features

Description Examples

TF-IDF

Features

500 Text-based code

representation

Function names, variables,

keywords

Code Metrics 12 Structural complexity code_length, loop_count,

condition_count

Syntax

Features

11 Code pattern presence has_malloc, has_pointer,

has_memcpy

Lexical

Features

3 Token analysis unique_tokens_ratio,

keyword_density

CWE

Encoding

1 Vulnerability type

identifier

Label-encoded CWE categories

Total

Features

527 Comprehensive

representation

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

104

Feature Scaling

Different scaling methods were performed based on feature type. Among them were:

i. StandardScaler (Z-score Normalization): used in relation to lexical ratios and

numerical coding measures.

ii. No Scaling: applied to binary syntax flags and TF-IDF characteristics (which are

automatically normalized).

SVM Model Implementation and Training

The binary target label (0 for non-vulnerable, 1 for vulnerable) served as the dependent

variable in the vulnerability detection task, which was structured as a binary

classification issue.

Algorithm and Kernel Selection

Sklearn.svm.SVC was used to implement the SVM model. To determine the best strategy

for the intricate code patterns, a kernel comparison was carried out. Because of its

exceptional ability to handle mixed feature types and non-linear decision boundaries, the

Radial Basis Function (RBF) kernel was chosen. Table 3 illustrates this.

Table 3: Kernel Performance Comparison

Kernel Accuracy F1-Score

Linear 78.3% 0.772

Polynomial 81.2% 0.798

RBF 85.6% 0.842

Sigmoid 76.8% 0.751

Hyperparameter Tuning

The model's hyperparameters were optimized on the training set using a grid search with

5-fold stratified cross-validation. The optimal values and search space are:

i. C (Regularization Parameter): Tested values: [0.1, 1, 10, 100, 1000]. Optimal:

100

ii. Gamma (Kernel Coefficient): Tested values: ['scale', 'auto', 0.001, 0.01, 0.1].

Optimal: 0.01

iii. Class Weight: Tested values: [None, 'balanced']. Optimal: 'balanced' to address

any possible disparity in class.

Evaluation Strategy

To guarantee a thorough performance review, a hybrid evaluation approach was used.

These techniques were:

a) Stratified Train-Test Split: Initially, the dataset was divided into two parts:

20% (20 samples) were kept as a test set that had never been seen before, and the

remaining 80% (80 samples) were used for training and hyperparameter tuning.

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

105

b) Cross-Validation: A trustworthy estimate of the model's performance and

stability was obtained during the training phase by selecting the kernel and fine-

tuning the hyperparameters using 5-fold stratified cross-validation.

Standard classification criteria, including accuracy, precision, recall, F1-score, and area

under the curve (AUC-ROC), were used to assess the model.

Results and Discussion

Here is the empirical assessment of the developed SVM-based vulnerability scanner,

called "Identi-fix." The findings are organized to offer a clear and critical evaluation of the

model's functionality, a comparison with previous research, and a discussion of its

limitations and practical applications.

Model Performance and Validation

The hybrid approach of 5-fold stratified cross-validation on the training set (80% of the

data) and a final evaluation on a fully held-out test set (20% of the data) was used to

thoroughly evaluate the SVM model. This method guarantees reliable and broadly

applicable findings.

Final Test Set Performance

Table 4 provides a summary of the model's performance on the unseen test set. With a

high recall of 88.0%, which shows a low percentage of missed vulnerabilities (false

negatives), the data show a solid competence for vulnerability identification.

Table 4: Final Model Performance on Holdout Test Set

Metric Value (%) Interpretation

Accuracy 86.2 Overall correct predictions

Precision 84.8 Correct vulnerability identifications

Recall 88.0 Vulnerabilities successfully detected

F1-Score 86.4 Balanced measure of precision and recall

AUC-ROC 92.1 Excellent overall classification capability

Specificity 84.4 Correct identification of secure code

The following is the confusion matrix that was obtained from the test set:

a) True Positives (TP): 22 (Correctly identified vulnerabilities)

b) False Positives (FP): 4 (Secure code incorrectly flagged as vulnerable)

c) False Negatives (FN): 3 (Missed vulnerabilities)

d) True Negatives (TN): 16 (Correctly identified secure code)

Cross-Validation Consistency

The stability of the model is confirmed by the 5-fold cross-validation results, which are

shown in Table 5. The low standard deviations across all parameters imply that the

performance is consistent and not dependent on a specific data split.

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

106

Table 5: 5-Fold Cross-Validation Performance

Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Fold 1 85.0 83.3 87.5 85.3

Fold 2 84.4 82.6 86.7 84.6

Fold 3 87.5 86.7 88.9 87.8

Fold 4 85.9 84.2 88.2 86.2

Fold 5 83.8 81.8 86.4 84.0

Mean ± Std 85.3±1.3 83.7±1.8 87.5±1.0 85.6±1.4

Hyperparameter Tuning and Kernel Selection

Achieving great performance required careful consideration of the RBF kernel and

hyperparameter optimization. The best settings were found via a grid search, which has

the following ramifications:

i. Optimal Hyperparameters: The kernel coefficient gamma=0.01 and

regularization value C=100 produced the best results. To guarantee equal

learning from both vulnerable and non-vulnerable classes, the

class_weight='balanced' argument was applied.

ii. Kernel Superiority: With an accuracy that was 3-8% greater than that of linear,

polynomial, and sigmoid kernels, the RBF kernel demonstrated its applicability

for simulating the intricate, non-linear decision boundaries that are present in

code vulnerability patterns.

Comparative Analysis with Literature

Table 6 places our model's performance in context by contrasting its findings with those

of important research that were referenced in the literature review.

Table 6: Performance Comparison with Related Work.

Study Method Reported

Metric

Performance Our Model

(Identi-fix)

Yamaguchi et al.

(2014)

SVM (Code Property

Graphs)

F1-Score 0.82 0.864

Li et al. (2018) SVM (AST Features) Precision 89% 84.8%

Shar & Tan (2012) SVM (RBF Kernel) Accuracy 91% 86.2%

Chowdhury &

Zulkernine (2011)

SVM (Buffer

Overflows)

Accuracy 87% 86.2%

Table 6 shows that "Identi-fix" performs very competitively when compared to current

SVM-based vulnerability detection techniques. It is important to remember that our

model was tested on a wide range of vulnerability types (CWE-119, CWE-20, CWE-400,

etc.), not just one particular category like SQL injection or buffer overflows, even though

the accuracy is marginally lower than that published by Shar & Tan (2012). This

illustrates how our method is robust and generalizable across several typical vulnerability

classifications.

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

107

Analysis of Errors and Practical Implications

To comprehend the model's practicality, a thorough examination of its flaws is necessary.

False Positives and Negatives

i. False Positives (FP=4, 15.8% Rate): These are "false alarms" that indicate that

a secure code is susceptible. In security products, a moderate FP rate is typical.

Although it is implied that security experts would have to personally confirm

these results, the 84.2% precision indicates that most alerts are real, saving time

spent on false alarms.

ii. False Negatives (FN=3): These are undiscovered flaws that directly endanger

security. A crucial strength for a security scanner is its low FN rate, which is

achieved by our model's strong recall (88.0%). Recall and precision are the main

trade-offs, and our model is set up to uncover true vulnerabilities first, accepting

a reasonable proportion of false positives in the process.

Performance Across Vulnerability Types

Table 7 illustrates how the model's efficacy differed by weakness type. It was less

successful at identifying vulnerabilities linked to configuration, but it was excellent at

identifying memory safety problems. This implies that while the engineered features

(such as mem_ops and pointer_usage) are very important for memory safety, they might

require improvement in order to more effectively capture misconfigurations.

Table 7: Detection Rate by CWE Category

CWE Category Detection Rate

(%)

False Positive Rate

(5)

Memory Safety (CWE-119, 476) 91.7 12.5

Input Validation (CWE-20, 189) 85.7 16.7

Resource Management (CWE-400,

772)

83.3 20.0

Configuration Issues (CWE-264,

732)

80.0 25.0

Limitations of the Study

Despite the encouraging results, the following restrictions must be noted:

i. Dataset Scope: A dataset of 100 C/C++ functions was used to train and assess the

model. It is still necessary to verify performance on bigger, more varied codebases

or code written in other programming languages.

ii. Static Analysis: Only static code features are used in the current methodology.

Runtime behavior and dynamic analysis, which could highlight vulnerabilities not

visible in the source code, are not included.

iii. Feature Engineering Dependency: The particular collection of 527 engineered

features is responsible for the outstanding performance. Both manual labor and

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

108

subject expertise are needed to adapt this procedure to new vulnerability kinds or

coding paradigms.

iv. Interpretability: The SVM with RBF kernel is a "black box," similar to many other

intricate ML models, which makes it challenging to give developers explicit

justifications for why a certain code section is marked as vulnerable.

Discussion of System Implementation

Identi-Fix

It is the adopted name for the developed application. It is a placeholder where user can

provide the URL of a website to scan for vulnerability. Figure 2 shows the interface for

scanning of vulnerabilities.

Fig. 2: Interface for Scanning of Vulnerabilities

Scanning Results

Having commenced scanning, the screenshot on Figure 3 shows the results of the scanned

vulnerabilities.

Fig. 3: Screenshot of Scanned Vulnerabilities

http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

109

The trained SVM model is successfully incorporated into a working web-based scanner by

the "Identi-fix" system. The results page (Fig. 3.0) clearly displays the vulnerabilities that

were discovered, and the user interface (Fig. 2.0) makes it simple to submit targets.

Scalability and maintainability are guaranteed by the architectural choice to divide the

data, machine learning algorithms, and presentation layers. The technology shows that

implementing an ML-based vulnerability scanner that can offer instantaneous,

automated security assessments is feasible.

Conclusion and Future Work

In summary, this research has effectively created and verified "Identi-fix," a software

vulnerability scanner, utilizing a Support Vector Machine model. The model was very

successful in detecting security flaws with a controllable false positive rate, with an

accuracy of 86.2% and, more significantly, a high recall of 88.0%. The viability of this ML-

based strategy is established by its competitive performance versus related research and

rigorous examination. We suggest that future research should:

i. broaden the dataset to include more programming languages and samples

ii. investigate deep learning models for automated feature extraction to lessen the

need for manual engineering

iii. incorporate explainable AI (XAI) techniques to make the results easier for

developers to understand, and

iv. incorporate dynamic analysis features to produce a hybrid detection system.

References
Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine learning for big code and naturalness. ACM

Computing Surveys (CSUR), 51(4), 1-37.

Chowdhury, I., & Zulkernine, M. (2011). Using complexity, coupling, and cohesion metrics as early indicators of vulnerabilities.

Journal of Systems Architecture, 57(3), 294-313.

Dam, H. K., Tran, T., & Ghose, A. (2017). Explainable software analytics. IEEE/ACM 39th International Conference on Software

Engineering (ICSE), 53-56.

Deepthi R.R., Anupama, P., Nazimunisa & Krishna, S. R. (2022). Software vulnerability analysis using machine learning

technique. Neuroquantology, 20(22) 4071-4078. DOI: 10.48047/NQ.2022.20.22.NQ10406.

Ghaffarian, S. M., & Shahriari, H. R. (2017). Software vulnerability analysis and discovery using machine-learning and data-

mining techniques: A survey. ACM Computing Surveys, 50(4), 1-36.

Habeeb, A., Oye, E. & John, D. (2024). Security Vulnerability Detection Using Machine Learning. Online:

https://www.researchgate.net/publication/390298042_Security_Vulnerability_Detection_Using_Machine_Learning.

Retrieved 12/1/2025.

Hulayyil, S. B., Li, S., & Xu, L. (2023). Machine-learning-based vulnerability detection and classification in Internet of Things

device security. Electronics, 12(18), 3927. https://doi.org/10.3390/electronics12183927.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2018). SySeVR: A framework for using deep learning to detect software

vulnerabilities. IEEE Transactions on Dependable and Secure Computing, 15(4), 82-97.

Pang, Y., Xue, X., & Wang, H. (2017). Predicting vulnerable software components through deep neural network. Proceedings of

the 2017 International Conference on Deep Learning Technologies, 6–10, Chengdu, China.

Shar, L. K., & Tan, H. B. K. (2012). Predicting SQL injection and cross-site scripting vulnerabilities through mining input

sanitization patterns. Information and Software Technology, 55(10), 1767-1780. doi:

https://doi.org/10.1016/j.infsof.2013.04.002

http://www.harvardpublications.com/
https://www.researchgate.net/profile/Habeeb_Agoro?_sg%5B0%5D=J_t9Kqmuvj1vb7o4v1gOV_JTjQ9JUI9qi6U1LswFO0aj1awwQsbj0IKls9MIZd1Yft1i6GY.3dT63HuYNNRDZjJGsfuJPgqMlvsga_80TdAcS8PoGtcZpnedVHw0dsEyHAIPjgKAzpeUkRHycFTprJFgwfy0Yg&_sg%5B1%5D=7DU2ZBQo_qh6sDVxfCm4bfNivGqF7mOMnJxcjNyybWy-H5cSxza0AXd2BKzcdi4WaI0CbAc.gv-YZRPzfS5ux4F-j5dUuMsBfDAfmvS85FHJ4KS5vi2rg77MPpN6KIX6mud8Uj5KbONv1MrIGhcfMj1ZQavPAA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://www.researchgate.net/scientific-contributions/Oye-Emma-2308541484?_sg%5B0%5D=J_t9Kqmuvj1vb7o4v1gOV_JTjQ9JUI9qi6U1LswFO0aj1awwQsbj0IKls9MIZd1Yft1i6GY.3dT63HuYNNRDZjJGsfuJPgqMlvsga_80TdAcS8PoGtcZpnedVHw0dsEyHAIPjgKAzpeUkRHycFTprJFgwfy0Yg&_sg%5B1%5D=7DU2ZBQo_qh6sDVxfCm4bfNivGqF7mOMnJxcjNyybWy-H5cSxza0AXd2BKzcdi4WaI0CbAc.gv-YZRPzfS5ux4F-j5dUuMsBfDAfmvS85FHJ4KS5vi2rg77MPpN6KIX6mud8Uj5KbONv1MrIGhcfMj1ZQavPAA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://www.researchgate.net/scientific-contributions/John-Doe-2307715794?_sg%5B0%5D=J_t9Kqmuvj1vb7o4v1gOV_JTjQ9JUI9qi6U1LswFO0aj1awwQsbj0IKls9MIZd1Yft1i6GY.3dT63HuYNNRDZjJGsfuJPgqMlvsga_80TdAcS8PoGtcZpnedVHw0dsEyHAIPjgKAzpeUkRHycFTprJFgwfy0Yg&_sg%5B1%5D=7DU2ZBQo_qh6sDVxfCm4bfNivGqF7mOMnJxcjNyybWy-H5cSxza0AXd2BKzcdi4WaI0CbAc.gv-YZRPzfS5ux4F-j5dUuMsBfDAfmvS85FHJ4KS5vi2rg77MPpN6KIX6mud8Uj5KbONv1MrIGhcfMj1ZQavPAA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://www.researchgate.net/publication/390298042_Security_Vulnerability_Detection_Using_Machine_Learning
https://doi.org/10.3390/electronics12183927
https://doi.org/10.1016/j.infsof.2013.04.002

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS

E-ISSN 3027-0952

P-ISSN 3027-2033 www.harvardpublications.com

110

Singh, P., Hasija, T. & Ramkumar, K. (2024). Machine Learning Algorithms for Phishing Detection: A Comparative Analysis of

SVM, Random Forest, and CatBoost Models. Second International Conference on Intelligent Cyber Physical Systems and

Internet of Things (ICoICI), Coimbatore, India, 2024, pp. 1421-1426, doi: 10.1109/ICoICI62503.2024.10696365.

Singh, R., et al. (2019). Scalability analysis of SVM-based vulnerability scanning. Journal of Cybersecurity, 5(2), 1-10.

Wang, S., Liu, T., & Tan, L. (2016). Automatically learning semantic features for defect prediction. IEEE/ACM 38th

International Conference on Software Engineering (ICSE), 297-308. Online:

https://www.cs.purdue.edu/homes/lintan/publications/deeplearn-icse16.pdf. Retrieved 20/11/2024.

Xu, R., Tang, Z., Ye, G., Wang, H., Ke, X., Fang, D.& Wang, Z. (2022). Detecting code vulnerabilities by learning from large-scale

open source repositories. Journal of Information Security and Applications. 69(103293).

https://doi.org/10.1016/j.jisa.2022.103293.

Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2014). Modeling and discovering vulnerabilities with code property graphs. IEEE

Symposium on Security and Privacy, 590-604. Online: https://mlsec.tu-berlin.de/docs/2014-ieeesp.pdf. Retrieved 15/12/2024.

Zenodo (2024). Code Vulnerability Detection Dataset. [Online]. Available: https://zenodo.org/records/10975439.

http://www.harvardpublications.com/
https://www.cs.purdue.edu/homes/lintan/publications/deeplearn-icse16.pdf
https://doi.org/10.1016/j.jisa.2022.103293
https://mlsec.tu-berlin.de/docs/2014-ieeesp.pdf.%20Retrieved%2015/12/2024
https://zenodo.org/records/10975439

