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Abstract

Numerous assaults and
system failures brought on
by the

vulnerabilities

exploitation of
have
resulted from the growing
reliance on software across
industries, underscoring
the widespread absence of

straightforward detection

techniques. Because
traditional vulnerability
assessment techniques

are frequently laborious,
resource-intensive, and

prone to human error, more

accurate and efficient
solutions are required. In
this study, Support Vector

Machines (SVM) were used

Cybersecurity, machine
learning, software
vulnerability, support
vector machine (SVM),
vulnerability scanner.

to construct a software
vulnerability scanner.
Keywords:

Using the SVM method to

analyze software

INTRODUCTION

An advanced automated
test that searches for and
finds
your system is called a

known defects in

software
test.
mobile) that automatically

vulnerability
Software (web or

searches for and reports
potential vulnerabilities
in a computer system,
network, or application is
known as a vulnerability
scanner. The scan, which
could take a few minutes
to many hours to complete,
will deliver a report of
vulnerabilities that have
been found and need to be
After  the

completed

addressed.
scanner has
scanning, the
vulnerabilities must be
actively removed via
patches, updates, or other
cybersecurity procedures,

according to Miler (2022).

The most common
vulnerabilities that
automated scanners

search for are missing
patches, which show that
the system does not have
the most recent security

updates loaded.
Remember the first
WannaCry attacks in

2017? Microsoft showed
that it was aware of the
theft of hacking tools
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vulnerabilities, designing

and implementing the

scanner system, and
assessing its performance
were the specific goals. A
approach

was used, with the Agile

mixed-methods

development
process used. A
preprocessed dataset of 100

software
being

C/C++ code functions was
used to train the SVM

model, which was then
converted into 527 feature
stratified

train-test split and five-fold

dimensions. A

cross-validation were used
to assess the model. An
unseen test set showed that
the developed
"Identi-fix,"

robustly and had low false-
with
accuracy of 86.2%, precision

system,
performed

negative rates,

of 84.8%, recall of 88.0%,
and F1-score of 86.4%. The
research effectively created
an SVM-based
vulnerability scanner,
which supports the use of
machine learning in
cybersecurity and improves
early software

vulnerability identification.

argeted at its operating systems by sending upgrades months before the attacks. It

is startling to see that 26% of businesses are still vulnerable to WannaCry

ransomware because they failed to patch the vulnerability it exploits, which was
previously reported by Miler (2022). This is despite the fact that most firms did not secure
their systems within a few months.
The scanner also searches for outdated software, which means the most recent security
patches are not installed and the vendor no longer supports it. Attackers usually target
outdated software because it is easier to exploit, leaving the system vulnerable to known
vulnerabilities. The vulnerability scanning software also finds misconfigured security
settings. This can include weak passwords, open ports, and default configurations—all of
which an attacker could take advantage of. For example, if a system's password is weak,
an attacker might be able to figure it out and get unauthorized access. Furthermore, an
attacker might be able to gain access to a system by using open ports that are not
necessary.
The aforementioned shortcomings impact organizations, institutions, and the financial
industry; according to Goutam & Tiwari (2019), the financial sector is especially impacted
not only by the financial capital involved but also by the private and sensitive information
of its consumers. For example, if a system is hacked due to defects, it may experience
unscheduled outages and damage to its reputation as customers will no longer trust that
the business can protect their data. This could result in lost revenue, diminished
productivity, and damage to one's reputation. Furthermore, if private information is
stolen or destroyed as a result of the compromise, there may be further financial losses,
fines from the authorities, and possibly legal action.
The increasing sophistication and frequency of cyberattacks present a significant
challenge for companies trying to protect their digital assets. Ogundairo made this known
(2024). Early researchers like Oliveira et al. (2021) used machine learning for
vulnerability identification utilizing the basic method in FastScan, but with tweaks to
focus the prediction on a specific form of vulnerability. This was done to improve software
vulnerability detection. Additionally, the input dataset was subjected to hyperparameter
optimization. Security professionals also conducted manual penetration testing, which
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involved attempting to manually exploit vulnerabilities, as part of the system's security
assessment. This process was time-consuming and error-prone since it was difficult to
stay current with the latest vulnerabilities and exploit techniques.

It is important to improve vulnerability detection accuracy since a vulnerability scanner
that uses Support Vector Machines (SVM) may automatically check for underlying
software issues that could lead to corruption, system compromise, or data loss.
Researchers, most notably Austin and Hodge (2020), have shown that SVM increases the
efficiency and accuracy of vulnerability identification by learning from historical attack
patterns and adapting to new threats.

Supervised max-margin models with matching learning algorithms that examine data for
regression and classification are called support vector machines, sometimes referred to as
support vector networks or SVMs. The vulnerability scanner will apply the optimal
vulnerability detection technique based on the SVM algorithm. Developed at AT&T Bell
Laboratories, SVMs are among the most studied models. They are based on the statistical
learning frameworks of VC theory proposed by Vapnik & Chervonenkis (1974/1982). SVM
may efficiently perform classification using kernel approaches by transforming the
original data points into coordinates in a higher-dimensional feature space and expressing
the data only through a sequence of pairwise similarity comparisons. SVM will use the
kernel technique to implicitly map its inputs into high-dimensional feature spaces in order
to achieve linear classification.

As max-margin models, SVMs are resilient to noisy data (e.g., instances that are wrongly
classified). This will lead to more accurate vulnerability identification, which can help
businesses prioritize their security efforts and reduce the likelihood of false positives
(Ussatova et al., 2023).

The study will result in a functional SVM-based vulnerability scanner that can be used to
improve the security of any kind of company.

The constantly evolving digital ecosystem has led to a multitude of cyberthreats and
vulnerabilities. Even though cyber security regulations and technologies have advanced,
effective vulnerability management is still a concern for businesses. The time-consuming,
resource-intensive, and human error-prone nature of manual vulnerability assessment
procedures makes systems and data susceptible to potential exploitation by malicious
actors. A significant issue that puts companies' security at risk across all industries is the
increase in cyberattacks and data breaches. Organizations are looking for an effective tool
to assess their security posture because traditional security methods are no longer
adequate to detect and prevent issues. By creating a vulnerability scanner, businesses
will be able to improve their overall security.

The aim of this study is to develop a vulnerability scanner using support vector machine
(SVM).

Objectives are to: analyze software vulnerabilities using SVM algorithm, design a
vulnerability scanner system, implement a vulnerability scanner system, and evaluate
the performance of the system.

By prioritizing the needs of stakeholders, the study aims to offer a solution that enhances
the security environment. The development of a vulnerability scanner is a significant step

E-ISSN 3027-0952
P-ISSN 3027-2033 www.harvardpublications.com 9 9



http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS
|

forward in cyber security. Furthermore, the creation of the vulnerability scanner utilizing
SVM would boost stakeholder confidence by showcasing a robust and resilient security
posture and enhancing risk mitigation. Additionally, preventive vulnerability
management lowers the risk of data breaches, monetary losses, and harm to one's
reputation.

Literature Review

Hulayyil et al (2023) stated that one of the most important technologies for defending
Internet of Things (IoT) devices against cyberattacks is the ability to identify cyber
security flaws in these devices before they are exploited, which is becoming more and more
difficult. Their study used machine learning techniques on multiple datasets, including
I0T23, to perform a thorough survey to examine the tools and methods used in
vulnerability identification in IoT contexts. The study outlined the machine learning
workflow for identifying IoT vulnerabilities and examined the common possible
vulnerabilities of IoT systems on each tier. A survey of current research trends was
provided, along with a proposal for a framework for vulnerability identification and
mitigation in machine learning-based vulnerability detection in IoT environments. In
contrast to earlier research that was used in an Internet of Things context, the study in
question concentrated on creating a software vulnerability scanner.

In cybersecurity, machine learning has been used extensively to enhance vulnerability
detection. While early methods depended on rule-based systems, machine learning
techniques provide greater detection rates and flexibility. In a thorough analysis of ML-
based vulnerability detection, Ghaffarian and Shahriari (2017) highlighted that
supervised learning models—such as SVMs—perform better than conventional signature-
based techniques in detecting undiscovered vulnerabilities. Their research demonstrated
how well SVMs handle high-dimensional data, which is a prevalent feature of software
code. While the latter developed a method for software vulnerability identification using
support vector machines, the former study conducted a survey about works that
accomplished vulnerability detection.

Supervised learning models (SVM), categorize data by identifying the best hyperplane
between classes. They are appropriate for examining intricate software code architectures
because of their capacity to manage non-linear interactions through kernel functions.
Feature extraction is a crucial step in SVM-based vulnerability identification. Code
properties, including function calls and control flow graphs, were transformed into
numerical features using a technique presented by Yamaguchi et al. (2014). Their SVM
model detected vulnerabilities in C/C++ code with an F1-score of 0.82. Similar to this, Li
et al. (2018) trained an SVM classifier using syntactic and semantic features from
Abstract Syntax Trees (ASTs), achieving an 89% precision on the National Vulnerability
Database (NVD) dataset. Thus, these studies are comparable to the one under review
since they utilize machine learning approaches towards vulnerability identification, but
distinct the one under review because many additional factors were used and applied for
vulnerability detection by utilizing the SVM a model/algorithm.
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The choice of kernel function strongly effects SVM performance. Shar and Tan (2012)
compared linear, polynomial, and Radial Basis Function (RBF) kernels for vulnerability
prediction in PHP applications. According to their findings, the RBF kernel's capacity to
represent non-linear decision boundaries allowed it to attain the highest accuracy (91%)
of any kernel. Wang et al. (2016) went on to say that model robustness was improved by
parameter optimization strategies such grid search and cross-validation.

SVMs and other ML approaches for vulnerability identification have been compared in a
number of research. Using a dataset of buffer overflow vulnerabilities, Chowdhury and
Zulkernine (2011) assessed SVMs, Decision Trees, and Naive Bayes classifiers. With an
accuracy of 87%, their results demonstrated that SVMs performed better than other
models. Nonetheless, several scholars have suggested hybrid strategies that combine
SVMs with additional methods. For example, Dam et al. (2017) achieved a 93% detection
rate on IoT firmware vulnerabilities by combining SVMs with deep learning for feature
extraction. In the same spirit, this study looked at leveraging SVM to accomplish software
vulnerability detection, while the previous study used hybrid techniques.

Despite its advantages, SVM-based vulnerability scanners encounter various issues
include imbalanced datasets, where Pang et al., (2020) indicated that susceptible code
samples are infrequent compared to non-vulnerable ones, leading to biased models.
Additionally, interpretability: According to Allamanis et al. (2018), SVM conclusions are
frequently harder to understand than those of rule-based systems, which makes it
challenging for developers to comprehend vulnerabilities that are found. However, when
used for software vulnerability identification, SVMs have shown promising results due to
their high accuracy and adaptability across a variety of programming languages.

The study basically makes the case that current approaches are either too inaccurate or
unstable (certain automated technologies) or too slow or prone to errors (manual). By
providing a simplified, automated, and incredibly efficient method for detecting multiple
types of vulnerabilities, it suggests that its SVM-based "Identi-fix" scanner successfully
closes this gap.

Materials and Methods

This study used a mixed-methods approach, integrating qualitative scanner system
design and evaluation with quantitative examination of software vulnerabilities. To allow
for flexibility and iterative improvement, the entire development process adhered to the
agile software development methodology. The creation, training, and assessment of a
Support Vector Machine (SVM) model for vulnerability identification constituted the main
focus of the study.

System Architecture
The architecture of the system is represented in Figure 1.
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Fig. 1.0: Architecture of the System

The vulnerability scanner system finds devices and known vulnerabilities using a Scan
Database and a CVE Dataset. Using tools to collect system data, a scan engine manages
the procedure. A Support Vector Machine (SVM) method is then used to assess this data
and provide a high, medium, or low risk rating to vulnerabilities that are found. The
outcomes are shown, and administrators receive thorough reports that include
recommendations for repairs. A user-friendly graphical user interface (User GUI) is used
to configure scans, evaluate results, and create reports, as well as to access the complete
system.

Data Source and Description

The C/C++ code functions from open-source repositories and vulnerability databases,
which are publicly accessible on Zenodo (2024), comprised the dataset used to train and
assess the SVM model. This dataset was selected due to its representation of real-world
vulnerability patterns and balance. A comprehensive summary of the dataset is provided
in Table 1.

Table 1: Dataset Summary for Model Training
ego De ptio Deta

General Information
Total 100 code samples
Records
Data Type C/C++ source code functions and snippets
Time Frame | Multi-year collection Historical to contemporary
code
Data Open-source repositories, vulnerability | Linux  kernel, system
Sources databases utilities, libraries
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Category
Class Distribution

Description

Details

Vulnerable Instances (1)

50 samples

50% of dataset

Non-Vulnerable
Instances (0)

50 samples

50% of dataset

Vulnerability Types

(CWE)

Memory Safety, Input Validation,

Resource
Configuration Issues

Management,

CWE-119, CWE-20, CWE-
400, CWE-264, etc.

Data Quality

Preprocessing applied: code
normalization, CWE
standardization, duplicate
removal.

Data Preprocessing and Feature Engineering

A thorough preprocessing and feature engineering pipeline was put in place to convert the

raw source code into a format appropriate for machine learning.

Code Normalization and Cleaning

Noise was reduced by cleaning the raw code text by:

1. eliminating lengthy hexadecimal sequences and numeric constants was required.

ii. making formatting and spacing consistent.

iii. key grammatical components, such as function names, variables, and keywords,

were preserved.

Feature Engineering

A multifaceted feature set was designed to capture the code's structural and semantic

properties. Table 2 summarizes the final feature vector, which included 527 dimensions

in many categories.

Table 2: Engineered Feature Categories

Feature Number of Description Examples

Category Features

TF-IDF 500 Text-based code | Function names, variables,

Features representation keywords

Code Metrics 12 Structural complexity | code_length, loop_count,
condition_count

Syntax 11 Code pattern presence | has_malloc, has_pointer,

Features has_memcpy

Lexical 3 Token analysis unique_tokens_ratio,

Features keyword_density

CWE 1 Vulnerability type | Label-encoded CWE categories

Encoding identifier

Total 527 Comprehensive

Features representation
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Feature Scaling
Different scaling methods were performed based on feature type. Among them were:
1. StandardScaler (Z-score Normalization): used in relation to lexical ratios and
numerical coding measures.
ii. No Scaling: applied to binary syntax flags and TF-IDF characteristics (which are
automatically normalized).

SVM Model Implementation and Training

The binary target label (0 for non-vulnerable, 1 for vulnerable) served as the dependent
variable in the vulnerability detection task, which was structured as a binary
classification issue.

Algorithm and Kernel Selection

Sklearn.svm.SVC was used to implement the SVM model. To determine the best strategy
for the intricate code patterns, a kernel comparison was carried out. Because of its
exceptional ability to handle mixed feature types and non-linear decision boundaries, the
Radial Basis Function (RBF) kernel was chosen. Table 3 illustrates this.

Table 3: Kernel Performance Comparison

A d O

Linear 78.3% 0.772
Polynomial 81.2% 0.798
RBF 85.6% 0.842
Sigmoid 76.8% 0.751

Hyperparameter Tuning
The model's hyperparameters were optimized on the training set using a grid search with
5-fold stratified cross-validation. The optimal values and search space are:
1. C (Regularization Parameter): Tested values: [0.1, 1, 10, 100, 1000]. Optimal:
100
ii. Gamma (Kernel Coefficient): Tested values: ['scale', 'auto’, 0.001, 0.01, 0.1].
Optimal: 0.01
iii. Class Weight: Tested values: [None, 'balanced']. Optimal: 'balanced’' to address
any possible disparity in class.

Evaluation Strategy
To guarantee a thorough performance review, a hybrid evaluation approach was used.
These techniques were:
a) Stratified Train-Test Split: Initially, the dataset was divided into two parts:
20% (20 samples) were kept as a test set that had never been seen before, and the
remaining 80% (80 samples) were used for training and hyperparameter tuning.
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b) Cross-Validation: A trustworthy estimate of the model's performance and
stability was obtained during the training phase by selecting the kernel and fine-
tuning the hyperparameters using 5-fold stratified cross-validation.

Standard classification criteria, including accuracy, precision, recall, F1-score, and area
under the curve (AUC-ROC), were used to assess the model.

Results and Discussion

Here is the empirical assessment of the developed SVM-based vulnerability scanner,
called "Identi-fix." The findings are organized to offer a clear and critical evaluation of the
model's functionality, a comparison with previous research, and a discussion of its
limitations and practical applications.

Model Performance and Validation

The hybrid approach of 5-fold stratified cross-validation on the training set (80% of the
data) and a final evaluation on a fully held-out test set (20% of the data) was used to
thoroughly evaluate the SVM model. This method guarantees reliable and broadly
applicable findings.

Final Test Set Performance

Table 4 provides a summary of the model's performance on the unseen test set. With a
high recall of 88.0%, which shows a low percentage of missed vulnerabilities (false
negatives), the data show a solid competence for vulnerability identification.

Table 4: Final Model Performance on Holdout Test Set

Metric Value (%) Interpretation

Accuracy 86.2 Overall correct predictions

Precision 84.8 Correct vulnerability identifications
Recall 88.0 Vulnerabilities successfully detected
F1-Score 86.4 Balanced measure of precision and recall
AUC-ROC 92.1 Excellent overall classification capability
Specificity 84.4 Correct identification of secure code

The following is the confusion matrix that was obtained from the test set:
a) True Positives (TP): 22 (Correctly identified vulnerabilities)
b) False Positives (FP): 4 (Secure code incorrectly flagged as vulnerable)
c¢) False Negatives (FN): 3 (Missed vulnerabilities)
d) True Negatives (TN): 16 (Correctly identified secure code)

Cross-Validation Consistency

The stability of the model is confirmed by the 5-fold cross-validation results, which are
shown in Table 5. The low standard deviations across all parameters imply that the
performance is consistent and not dependent on a specific data split.
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Table 5: 5-Fold Cross-Validation Performance

0 D 0 » 0 0
010 A 2 0 C O 0 eCa 0 OY€ 0

Fold 1 85.0 83.3 87.5 85.3
Fold 2 84.4 82.6 86.7 84.6
Fold 3 87.5 86.7 88.9 87.8
Fold 4 85.9 84.2 88.2 86.2
Fold 5 83.8 81.8 86.4 84.0
Mean + Std 85.3+1.3 83.7+1.8 87.5+£1.0 85.6+£1.4

Hyperparameter Tuning and Kernel Selection

Achieving great performance required careful consideration of the RBF kernel and
hyperparameter optimization. The best settings were found via a grid search, which has
the following ramifications:

1. Optimal Hyperparameters: The kernel coefficient gamma=0.01 and
regularization value C=100 produced the best results. To guarantee equal
learning from both vulnerable and non-vulnerable classes, the

class_weight='balanced' argument was applied.

ii. Kernel Superiority: With an accuracy that was 3-8% greater than that of linear,
polynomial, and sigmoid kernels, the RBF kernel demonstrated its applicability
for simulating the intricate, non-linear decision boundaries that are present in

code vulnerability patterns.
Comparative Analysis with Literature
Table 6 places our model's performance in context by contrasting its findings with those

of important research that were referenced in the literature review.

Table 6: Performance Comparison with Related Work.

Study Method Reported Performance Our Model
Metric (Identi-fix)

Yamaguchi et al. | SVM (Code Property | F1-Score 0.82 0.864

(2014) Graphs)

Li et al. (2018) SVM (AST Features) Precision 89% 84.8%

Shar & Tan (2012) | SVM (RBF Kernel) Accuracy 91% 86.2%

Chowdhury & | SVM (Buffer | Accuracy 87% 86.2%

Zulkernine (2011) Overflows)

Table 6 shows that "Identi-fix" performs very competitively when compared to current
SVM-based vulnerability detection techniques. It is important to remember that our
model was tested on a wide range of vulnerability types (CWE-119, CWE-20, CWE-400,
etc.), not just one particular category like SQL injection or buffer overflows, even though
the accuracy is marginally lower than that published by Shar & Tan (2012). This
illustrates how our method is robust and generalizable across several typical vulnerability
classifications.
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Analysis of Errors and Practical Implications
To comprehend the model's practicality, a thorough examination of its flaws is necessary.

False Positives and Negatives

i. False Positives (FP=4, 15.8% Rate): These are "false alarms" that indicate that
a secure code is susceptible. In security products, a moderate FP rate is typical.
Although it is implied that security experts would have to personally confirm
these results, the 84.2% precision indicates that most alerts are real, saving time
spent on false alarms.

1. False Negatives (FN=3): These are undiscovered flaws that directly endanger
security. A crucial strength for a security scanner is its low FN rate, which is
achieved by our model's strong recall (88.0%). Recall and precision are the main
trade-offs, and our model is set up to uncover true vulnerabilities first, accepting
a reasonable proportion of false positives in the process.

Performance Across Vulnerability Types

Table 7 illustrates how the model's efficacy differed by weakness type. It was less
successful at identifying vulnerabilities linked to configuration, but it was excellent at
identifying memory safety problems. This implies that while the engineered features
(such as mem_ops and pointer_usage) are very important for memory safety, they might
require improvement in order to more effectively capture misconfigurations.

Table 7: Detection Rate by CWE Category

CWE Category Detection Rate False Positive Rate
(% (5)

Memory Safety (CWE-119, 476) 91.7 12.5

Input Validation (CWE-20, 189) 85.7 16.7

Resource Management (CWE-400, | 83.3 20.0

772)

Configuration Issues (CWE-264, | 80.0 25.0

732)

Limitations of the Study
Despite the encouraging results, the following restrictions must be noted:

i. Dataset Scope: A dataset of 100 C/C++ functions was used to train and assess the
model. It is still necessary to verify performance on bigger, more varied codebases
or code written in other programming languages.

1. Static Analysis: Only static code features are used in the current methodology.
Runtime behavior and dynamic analysis, which could highlight vulnerabilities not
visible in the source code, are not included.

iii. Feature Engineering Dependency: The particular collection of 527 engineered
features is responsible for the outstanding performance. Both manual labor and

E-ISSN 3027-0952
P-ISSN 3027-2033 www.harvardpublications.com 1 O 7



http://www.harvardpublications.com/

INTERNATIONAL JOURNAL OF CONVERGENT AND INFORMATICS SCIENCE

RESEARCH (VOL. 9 NO. 9) SEPTEMBER, 2025 EDITIONS
|

subject expertise are needed to adapt this procedure to new vulnerability kinds or
coding paradigms.

iv. Interpretability: The SVM with RBF kernel is a "black box," similar to many other
intricate ML models, which makes it challenging to give developers explicit
justifications for why a certain code section is marked as vulnerable.

Discussion of System Implementation

Identi-Fix

It is the adopted name for the developed application. It is a placeholder where user can
provide the URL of a website to scan for vulnerability. Figure 2 shows the interface for
scanning of vulnerabilities.

T @ O O sonner »x [ - e x
) localhost ¢ fa] [ n 2 - O
€2 import favorites ™ Gmail @B YouTube E¥ Maps
L Si Deploy

Identi-fix

Enter a website URL to scan for vulnerabilities.
Website URL

example.com

) Scanning the website, please wait...

Fig. 2: Interface for Scanning of Vulnerabilities

Scanning Results
Having commenced scanning, the screenshot on Figure 3 shows the results of the scanned

vulnerabilities.
B D O e = 1B - e x
(@] (@ localhost 8502 Al o2 = 2 - O

B import favorites ™ Gmail @B YouTube BY Maps

Deploy

example.com

Scan

Raw scan results:
L e

Services detected:

= Port: BO, State: open, Service: http, Version: unknown

= Port: 443, State: open, Service: https, Version: unknown
* Port: 587, State: open, Servi
= Port: 1118, State: closed, Service: bnetgame, Version: unknown
= Port: 1935, State: closed, Service: rtmp, Version: unknown

Matching vulner:

No vulnerabilities found!

Fig. 3: Screenshot of Scanned Vulnerabilities
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The trained SVM model is successfully incorporated into a working web-based scanner by
the "Identi-fix" system. The results page (Fig. 3.0) clearly displays the vulnerabilities that
were discovered, and the user interface (Fig. 2.0) makes it simple to submit targets.
Scalability and maintainability are guaranteed by the architectural choice to divide the
data, machine learning algorithms, and presentation layers. The technology shows that
implementing an ML-based vulnerability scanner that can offer instantaneous,
automated security assessments is feasible.

Conclusion and Future Work
In summary, this research has effectively created and verified "Identi-fix," a software
vulnerability scanner, utilizing a Support Vector Machine model. The model was very
successful in detecting security flaws with a controllable false positive rate, with an
accuracy of 86.2% and, more significantly, a high recall of 88.0%. The viability of this ML-
based strategy is established by its competitive performance versus related research and
rigorous examination. We suggest that future research should:
1. broaden the dataset to include more programming languages and samples
ii. investigate deep learning models for automated feature extraction to lessen the
need for manual engineering
1. incorporate explainable Al (XAI) techniques to make the results easier for
developers to understand, and
1v. incorporate dynamic analysis features to produce a hybrid detection system.
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