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Abstract  
Laplace Decomposition 

Method was used to 

analyzed the sodium 

bicarbonate nano fluid near 

a stagnated point in a 

porous medium. The Navier 

Stokes equation describing 

the flow was transformed 

into partial differential 

equations using similarity 

transformational 

variables, with boundary 

conditions. The 

differential equations 

were solved using the 

Laplace Decomposition 

analysis. Results obtained, 

show that a decrease in 𝐺𝑟 

and Da leads to increase in 

the fluid velocity. However, 

the fluid velocity decreased 

as magnetic parameter 

increases, indicating that 

the magnetic field tends to 

retard the motion of the 

fluid. The flow temperature 
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INTRODUCTION  
Improvement in fluid 

thermal conductivity has 

gave room to the use of 

metallic oxide, which 

occur inform of acidic or 

basicity in nature. The 

first appear mostly in 

electrolysis with discharge 

of ion, these ions display 

some level of chemical 

conductivity. The second 

one is the metallic oxide, 

which play vital roles in 

fluid dynamic. These 

metal oxides are called 

nano-particles, forming 

nano-fluid. Utilizing these 

particles require increase 

in the surface area, that is, 

breaking the surface of 

such particles into smaller 

sizes. These particle are 

introduce into the flowing 

fluid with the aim of 

boosting the thermal 

conductivity of the fluid. 

Among these metals, is 

Sodium bi-carbonate 

𝑁𝑎2
𝐶𝑂2 with the discharge 

of 𝑁𝑎
2+ 𝑎𝑛𝑑 𝐶𝑂2−  and 

balance charge for equal 

distribution of fluid heat 

flow. In other word, 

metallic oxides particles in 

fluid, sum into nanofluid 

and play vital role in  area 

of application. Many 

electrical devices, uses  

Keywords:  Radiative, 

Sodium Bicarbonate, 

Laplace Decomposition, 

Stagnated point, porous 

media.  
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was also found to have 

increase with an increase in 

the radiative number N, 

resulting from nano 

particles used for boosting 

the thermal conductivity of 

the fluid.

 
anoparticle for heat transfer. Some of which are, transistors, rectifiers, 

amplifiers and so on. These nanoparticles gain heat and radiate due to the 

presence of both mixture of ions. Chio (1995) coined the word nanofluid, as a 

fluid mixture comprising of nano-particles or fibres, which led to the beginning of the 

studies on nanofluid. The theory of nanofluid has presented many fundamental properties 

with the enhancements in thermal conductivity as compared to the base fluid, Fan and 

Wang (2011). Many authors and researchers have carried out theoretical and 

experimental investigation on the concept of thermal conductivity of nanofluids. Dae-

Hwang (2007), Kleinstrtreuer and Feng (2011), Gireesha and Rudraswamy (2014). 

Hassani (2011), investigated the boundary layer flow problem of a nanofluid past a 

stretching sheet analytically, using the Homotopy Analysis Method. Both the effect of 

Brownian motion and thermophoresis were considered in this case. A study on free 

convective flow over a vertical stretching surface was conducted by Wang (1989). Makinde 

and Ogulu (2008), examined the effect of thermal radiation on heat and mass transfer of 

a variable viscosity fluid permeated with a uniform magnetic field. Dash, Mishra and 

Pattnaik (2021), studied the influence of radiative heat energy on the MHD flow of Cu-

Kerosene Nanofluid over a Vertical plate with the use of Laplace transform technique. 

Grubka and Bobba (1985) investigated fluid flow and heat transfer characteristics on 

stretching sheet with variable temperature condition. Haque et-al (2011), in their work - 

MHD free convective heat generating unsteady micro polar fluid flow through a porous 

medium with constant heat and mass fluxes - observed, that increase of magnetic force 

number (M) leads to decrease in velocity for an externally cooled plate which indicate that, 

the magnetic field tends to retard the motion of fluid. Meanwhile, increase in Grashof (𝐺𝑟) 

number and strong Darcy(𝐷𝑎) leads to decrease in velocity. Conclusively, decrease in 

magnetic number leads to increase in velocity while decrease in Darcy(𝐷𝑎) leads to an 

increase in velocity. Laplace decomposition is a numerical scheme which enables one to 

decomposed the non-linear terms in a given differential equation.  Laplace transformation 

is an approach for solving ordinary differential equation with initial condition, without 

the consideration of the non-linear term. Decomposed Laplace give advance of the former, 

because it offered the approach of overcoming non-linear. This advantage enables 

adoption of the scheme into fluid mechanics. Khuri (2001) and (2004), Yusufoglu (2006) 

introduce the concept of Laplace Decomposition method which involves Laplace 

transformation numerical scheme, based on the decomposition method for solving non-

linear differential equations. The aim of this work is to apply Laplace Decomposition 

Method as solution to Radiative Sodium Bicarbonate Nano fluid flow near a stagnated 

point in a porous medium. However, the effect of  𝑁𝑎2
𝐶𝑂2 on fluid flow wasn’t considered 

in details rather but used as a thermal heat booster.  

 

ASSUMPTIONS 

Fluid is considered a steady continuum Newtonian electrically conducting sodium bi-

carbonate  nano-fluid, with electrical conductivity 𝜎. It generates or absorbs heat at 

uniform rate with magnetic Reynolds number (𝑅𝑚 << 1) so that the induced magnetic 

flied is neglected. It is two-dimensional flow with permeable plate subjected to arbitrary 

heat flux 𝑞(𝑥). The Cartesian coordinate has its origin at the Centre of the plate with 𝑥 −

𝑎𝑥𝑖𝑠 measured along the vertical  direction, while the y−𝑎𝑥𝑖𝑠 is in the horizontal  direction, 

n 
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a uniform magnetic field is applied in the y−𝑎𝑥𝑖𝑠, gravitational field 𝑔 is directly opposite 

to the 𝑥 − 𝑎𝑥𝑖𝑠 with flow velocity 𝑢 in the vertical direction, as in the diagram below 

 

                         Porous medium 

x                                Sodium Bi- Carbonate 

 

  𝐵0 

 

                               y  

 

 

Due to magnetic effect on flow, Maxwell’s equation is given as:                                                                                                   
∇. 𝐷 =  𝜌𝑒    

∇ × H = 𝐽 + 
𝜕𝐷

𝜕𝑡
   

∇ × E = − 
𝜕𝐵

𝜕𝑡
    

∇. 𝐵 =  0       
𝜕𝜌𝑒

𝜕𝑡
+ ∇. 𝐽 = 0        

Where  

H = Magnetic field strength 

E = Electric field  

J = Current density 

With negligible current displacement  
𝜕𝐷

𝜕𝑡
  

∇ × H = 𝐽  
The expression of 𝐽 according to Ohm’s law 

𝐽 =
𝐸

𝜌
= 𝜎𝐸′ = 𝜎(𝐸 + 𝑢 × B)  

B = Magnetic induction vector  

Applying the non-relativistic Lorentz transformation under magneto hydro dynamic 

approximation, equation of motion, continuity, energy yield 

Continuity equation 

∇. 𝑣 = 0                                                                                                                                   1.00  

 

Motion equation 

𝜌(𝑢. ∇)𝑢 = −∇p − ρ∇φ + μ∇2 + 𝐽 × 𝐵 −
𝜇

𝑘
𝑢                                                                       1.01 

Energy equation 

𝜌𝑐𝑝(∇. T)𝑢 = −𝜌∇. u − ∇q + ∅ + ∇𝑞𝑟                                                                                   1.02 

The Buoyancy force acting on the fluid is a combination of density gradient and the body 

force due to gravitational filed 
ρ∇φ = ρ∞g − ρg = g[ρ∞ − ρ]  
Density difference is express using volumetary thermal expansion  

𝛽 =
−1

𝜌
(

𝜕𝜌

𝜕𝑇
) =

−1

𝜌
(

ρ∞−ρ

𝑇∞−𝑇
)   

ρ∞ − ρ = −βρ(𝑇∞ − 𝑇)  

ρ∇φ = βρg(𝑇∞ − 𝑇)  

𝐽 × 𝐵 = 𝜎(𝐸 + 𝑢 × B) × 𝐵 = 𝐵2𝜎𝑢  

−∇𝑞 = −∇(−𝑘𝑇∇𝑇) = 𝑘𝑇∇2𝑇                                                                                               

Both motion and energy equation yield  
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

−1

𝜌

𝑑𝑝

𝑑𝑥
+

𝜇

𝜌

𝜕2𝑢

𝜕𝑦2 +
βρg(𝑇∞−𝑇)

𝜌
−

𝜎𝐵0
2𝑢

𝜌
                                                                   1.03  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑇

𝜌𝑐𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) +
𝑄(𝑇∞−𝑇)

𝜌𝑐𝑝
+

1

𝜌𝐶𝜌

𝜕𝑞𝑟

𝜕𝑦
                                                               1.04 

 

Boundary conditions 

𝑢 =  𝑣 = 0,    
𝜕𝑇

𝜕𝑦
=

𝑞𝑤𝑥

𝑘
  

𝑢 = 𝑣 = 𝑎𝑥, 𝑇 = 𝑇𝑤                                                       

1.05 

The radiative heat flux term is simplified by using the Roseland diffusion approximation 

accordingly  

𝑞𝑟 =  −
16𝜎∗𝑇∞

3

3𝛼∗

𝜕𝑇

𝜕𝑦
                                                                                                                                1.06 

Where  𝜎∗ is the Stefan-Boltzmann constant, 𝛼∗ is the Rosseland mean absorption 

coefficient. Substituting (1.06) into (1.04), we have; 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑇

𝜌𝑐𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) +
𝑄(𝑇∞−𝑇)

𝜌𝑐𝑝
−

16𝜎∗𝑇∞
3

3𝛼∗𝜌𝐶𝜌

𝜕2𝑇

𝜕𝑦2                                                         1.07 

To reduce the motion and energy equation to dimensionless form, we introduce similarity 

variables and dimensionless quantity as ; 

𝑢 =
𝜕𝜑

𝜕𝑦
, 𝑣 = −

𝜕𝜑

𝜕𝑥
,   𝜑 = √𝑣𝑎 𝑥𝑓(𝜉, 𝜂)  ,    

𝜂 = √
𝑎

𝑣
 𝑦, 𝜉 =

𝑔𝛽𝑞

𝑎2𝑘
𝑅𝑒𝑥

−1

2 , 𝑇 = (
𝑞𝑤𝑥

𝑘
) 𝑅𝑒𝑥

−1

2 𝜃 + 𝑇∞             

𝑀2 =
𝜎𝛽0

2

𝛼𝜌
,    𝑃𝑟 =

𝜐

𝑎
, 𝜆 =

𝑄

𝛼𝜌𝐶𝜌
, 𝐺𝑟 =

𝛽𝑔𝑞

𝛼𝜅𝑥2 , 𝐷𝑎 =  
1

𝑘
, 𝑁 =

16𝜎∗𝑇∞
3

3𝛼∗𝛼𝜌𝐶𝜌
, 𝑅𝑒𝑥 =

𝑢∞𝑥

𝜐
=

𝑎𝑥2

𝜐
     1.08a  

 

For dimensionalisation of fluid flow, we used the following; 
𝑢 = 𝑎𝑥𝑓′(𝜂)       
𝜕𝑢

𝜕𝑥
= 𝑎𝑓′(𝜂)         

𝜕𝑢

𝜕𝑦
= 𝑎𝑥√

𝑎

𝑣
𝑓′′(𝜂)       

𝜕2𝑢

𝜕𝑦2 =
𝑎2𝑥

𝜐
𝑓′′′(𝜂)    

𝑣 = −√𝑣𝑎 𝑓(𝜂)                                                                                                                      1.08b                                                                                        

𝜕𝑇

𝜕𝑥
=

𝑞𝑤

𝜅
𝑅𝑒𝑥

−1

2 𝜃(𝜂)  

𝜕𝑇

𝜕𝑦
=

𝑞𝑤𝑥

𝜅
√

𝑎

𝑣
𝑅𝑒𝑥

−1

2 𝜃′(𝜂)  

𝜕2𝑇

𝜕𝑥2 = 0   

𝜕2𝑇

𝜕𝑦2 =
𝑞𝑤𝑥𝛼

𝜐𝜅
𝑅𝑒𝑥

−1

2 𝜃′′(𝜂)  

 

Substituting (1.08a) along with (1.08b) into (1.03) and (1.07) we have, 

𝑓′′′ − 𝑓′2
+ 𝑓𝑓′′ + 𝑃𝑟𝐺𝑟𝜃 − [𝑀2 + 𝑃𝑟𝐷𝑎]𝑓′ = 0                                                                 1.09 

𝜃′′ −
1

[1−𝑁]
[𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝜆𝜃] = 0                                                                               1.10 

With the transformed boundary conditions 

 𝑓(0) = 0, 𝑓′(0) = 0, 𝜃′(0) = 1 𝑎𝑡 𝜂 = 0  

 𝑓′(∞) = 1  𝜃(∞) = 0 𝑎𝑡 𝜂 = ∞                                                                                           1.12 

LAPLACE DECOMPOSITION  
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Given a non-linear differential equation 

𝐿[𝑣(𝑡)] + [𝑅𝑣(𝑡)] + [𝑁𝑣(𝑡)] = 𝑔(𝑡)                                                                                    2.01 

With initial conditions 

𝑣(0) = ℎ(𝑡), 𝑣′(𝑡) = 𝑠(𝑡), 𝑣′′(𝑡) = 𝑑(𝑡)                                                                             2.02 

Taking the Laplace transformation of equation (2.01), where 𝐿 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 is the order of the 

differential equation, if ordinary, [𝑅𝑣(𝑡)] 𝑎𝑛𝑑 [𝑁𝑣(𝑡)] are linear and non-linear terms of 

𝑔(𝑡)  

 

The general Laplace transform is given as 

𝑠𝑛𝑙[𝑢(𝑡)] − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0) − 𝑠𝑛−3𝑓′′(0) − 𝑠𝑛−4𝑓′′′(0) + ⋯ + 𝑓(0) = 0             2.03                

Taking the inverse of (2.03) 

𝑢(𝑡) = 𝑙−1 [
1

𝑠𝑛 (𝑠𝑛−1𝑓(0) + 𝑠𝑛−2𝑓′(0) + 𝑠𝑛−3𝑓′′(0) + 𝑠𝑛−4𝑓′′′(0) … 𝑓𝑛−1(0))]              2.04 

Use this property, take  

𝑙[𝑣(𝑡)] =
ℎ(𝑡)

𝑠
+

𝑠(𝑡)

𝑠2 +
𝑑(𝑡)

𝑠3 +
𝑙𝑔(𝑡)

𝑠3 −
𝑙[𝑅𝑣(𝑡)]

𝑠3 −
𝑙[𝑁𝑣(𝑡)]

𝑠3                                                                2.05 

Replacing the series with infinite series, we have; 

𝑙|∑ 𝑣𝑖(𝑡)∞
𝑖=0 | =

ℎ(𝑡)

𝑠
+

𝑠(𝑡)

𝑠2 +
𝑑(𝑡)

𝑠3 +
𝑙𝑔(𝑡)

𝑠3 −
𝑙[𝑅𝑣(𝑡)]

𝑠3 −
1

𝑠3 𝑙|∑ 𝐵𝑖(𝑡)∞
𝑖=0 |                                       2.06 

Taking inverse Laplace transform of (2.06) 

𝑙−1𝑙|∑ 𝑣𝑖(𝑡)∞
𝑖=0 | = 𝑙−1 [

ℎ(𝑡)

𝑠
+

𝑠(𝑡)

𝑠2 +
𝑑(𝑡)

𝑠3 +
𝑙𝑔(𝑡)

𝑠3 −
𝑙[𝑅𝑣(𝑡)]

𝑠3 ] − 𝑙−1 [
1

𝑠3 𝑙|∑ 𝐵𝑖(𝑡)∞
𝑖=0 |]       

∑ 𝑣𝑖(𝑡)∞
𝑖=0 = 𝑙−1 [

ℎ(𝑡)

𝑠
+

𝑠(𝑡)

𝑠2 +
𝑑(𝑡)

𝑠3 +
𝑙𝑔(𝑡)

𝑠3 −
𝑙[𝑅𝑣(𝑡)]

𝑠3 ] − 𝑙−1 [
1

𝑠3 𝑙|∑ 𝐵𝑖(𝑡)∞
𝑖=0 |]                        2.07 

 

DECOMPOSITION OF NON-LINEAR TERM 

The non-linear term is the term with either polynomial more than degree two (2) or have 

a multiplicative relationship between its derivatives and dependent variable.   

If the non-linear term is of the form 𝑢𝑚 𝑤𝑖𝑡ℎ 𝑚 𝑑𝑒𝑔𝑟𝑒𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 , then it’s decomposed 

polynomial is given as:  

𝐵𝑘 =
1

𝑘!
 

𝑑𝑘

𝑑𝜆𝑘 [𝑁(∑ 𝜆𝑖𝜓𝑖
𝑘
𝑖=𝑜 )Ι𝜆=0]                                                                                                         

 𝐵𝑘 =
1

𝑘!
 

𝑑𝑘

𝑑𝜆𝑘
[𝑁(𝜆0𝜓0 + 𝜆1𝜓1 + 𝜆2𝜓2)Ι𝜆=0]                                                                      

 𝐵0 =
1

0!
 

𝑑0

𝑑𝜆0
[𝑁(𝜓0)] = 𝑁(𝜓0) 

𝐵1 =
1

1!
 

𝑑1

𝑑𝜆1
[𝑁(𝜆0𝜓0 + 𝜆1𝜓1 + 𝜆2𝜓2)(𝜓1 + 2𝜆𝜓2)Ι𝜆=0] = 𝑁′(𝜓0)𝜓1       

Proof. 

𝐵2 =
1

2!
 

𝑑2

𝑑𝜆2
[𝑁(∑ 𝜆𝑖𝜓𝑖

2
𝑖=𝑜 )Ι𝜆=0] =

1

2!
 

𝑑2

𝑑𝜆2
[𝑁(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2)Ι𝜆=0]   

=
1

2

𝑑

𝑑𝜆
[𝑁′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2)(𝜓1 + 2𝜆𝜓2)]       

=
1

2
 [𝑁′′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2)(𝜓1 + 2𝜆𝜓2)2 + 2𝜓2𝑁′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2)]Ι𝜆=0                                  

 𝐵2 = 𝑁′(𝜓0)𝜓2 +
1

2
 𝑁′′(𝜓0)𝜓1

2   

𝐵3 =
1

3!
 

𝑑3

𝑑𝜆3
[𝑁(∑ 𝜆𝑖𝜓𝑖

3
𝑖=𝑜 )Ι𝜆=0] =

1

3!
 

𝑑3

𝑑𝜆3
[𝑁(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3)Ι𝜆=0]  

=
1

3!
 

𝑑2

𝑑𝜆2
[𝑁′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3)(𝜓1 + 2𝜆𝜓2 + 3𝜆2𝜓3)Ι𝜆=0]  
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=
1

3!

𝑑

𝑑𝜆
[𝑁′′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3)(𝜓1 + 2𝜆𝜓2 + 3𝜆2𝜓3)2 + 𝑁′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 +

𝜆3𝜓3)(2𝜓2 + 6𝜆𝜓3)Ι𝜆=0]  

=
1

3!
[𝑁′′′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3)(𝜓1 + 2𝜆𝜓2 + 3𝜆2𝜓3)3 + 2𝑁′′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 +

𝜆3𝜓3)(2𝜓2 + 6𝜆𝜓3) + 𝑁′′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3)(𝜓1 + 2𝜆𝜓2 + 3𝜆2𝜓3)(2𝜓2 + 6𝜆𝜓3) +

𝑁′(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3)(6𝜓3)Ι𝜆=0]  

𝐵3 = 𝑁′(𝜓0)𝜓3 + 𝑁′′(𝜓0)𝜓1 𝜓2 +
1

6
 𝑁′′′(𝜓0)𝜓1

3    

𝐵4 =
1

4!
 

𝑑4

𝑑𝜆4
[𝑁(∑ 𝜆𝑖𝜓𝑖

4
𝑖=𝑜 )Ι𝜆=0] =

1

4!
 

𝑑4

𝑑𝜆4
[𝑁(𝜆0𝜓0 + 𝜆𝜓1 + 𝜆2𝜓2 + 𝜆3𝜓3 + 𝜆4𝜓4)Ι𝜆=0]     

𝐵4 = 𝑁′(𝜓0)𝜓4 + 𝑁′′(𝜓0) (
𝜓2

2

2
+ 𝜓1𝜓3) +

𝜓1
2𝜓2

2
 𝑁′′′(𝜓0) +

𝜓1
4

4!
𝑁′′′′(𝜓0)    

        

Case 2: when either [𝑅𝑣(𝑡)] 𝑜𝑟 [𝑁𝑣(𝑡)] 𝑎𝑝𝑝𝑒𝑎𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑓𝑓′′ 𝑜𝑟 𝑓𝑓′  

Then 𝑓𝑓′′ 𝑜𝑟 𝑓𝑓′is decompose using Adomian decompose polynomial 

𝐵𝑘 = ∑ 𝑓𝑟𝑓𝑘−𝑟
′′𝑘

𝑟=0                                                                                                                                   

As we proceed, then we can write 

𝐵0 = 𝑓0𝑓0
′′  

𝐵1 = 𝑓0𝑓1
′′ + 𝑓1𝑓0

′′  

𝐵2 = 𝑓0𝑓2
′′ + 𝑓1𝑓1

′′ + 𝑓2𝑓1
′′  

𝐵3 = 𝑓0𝑓3
′′ + 𝑓1𝑓2

′′ + 𝑓2𝑓1
′′ + 𝑓3𝑓0

′′  

Case 3: when either  𝑁𝑔 𝑜𝑟 𝑅ℎ 𝑎𝑝𝑝𝑒𝑎𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 𝑓′′2
 𝑜𝑟 𝑓′2

,  

The above nonlinear term as appear in case three, can be written as 

(𝑓′′)2 = 𝑓′′𝑓′′  

Then 𝑓′′2
 𝑜𝑟 𝑓′2

is decompose using Adomian decompose polynomial 

𝐵𝑖 = ∑ 𝑓𝑘
′′𝑖

𝑘=0 𝑓𝑖−𝑘
′′  ∀𝑖 = 0 … 𝑛                                                                                                               𝐵0 =

𝑓0
′′𝑓0

′′      

𝐵1 = 𝑓0
′′𝑓1

′′ + 𝑓1
′′𝑓0

′′ = 2𝑓0
′′𝑓1

′′        

𝐵2 = 𝑓0
′′𝑓2

′′ + 𝑓1
′′𝑓1

′′ + 𝑓2
′′𝑓0

′′ = (𝑓1
′′)2 + 2𝑓0

′′𝑓2
′′                

𝐵3 = 𝑓0
′′𝑓3

′′ + 𝑓1
′′𝑓2

′′ + 𝑓2
′′𝑓1

′′ + 𝑓3
′′𝑓0

′′ = 2𝑓0
′′𝑓3

′′ + 2𝑓1
′′𝑓2

′′  

Likewise  

(𝑓′)2 = 𝑓′𝑓′  

𝐵𝑖 = ∑ 𝑓𝑘
′𝑖

𝑘=0 𝑓𝑖−𝑘
′  ∀𝑖 = 0 … 𝑛  

 𝐵0 = 𝑓0
′𝑓0

′ = (𝑓0
′)2      

𝐵1 = 𝑓0
′𝑓1

′ + 𝑓1
′𝑓0

′ = 2𝑓0
′𝑓1

′        

𝐵2 = 𝑓0
′𝑓2

′ + 𝑓1
′𝑓1

′ + 𝑓2
′𝑓0

′ = (𝑓1
′)2 + 2𝑓0

′𝑓2
′                

𝐵3 = 𝑓0
′𝑓3

′ + 𝑓1
′𝑓2

′ + 𝑓2
′𝑓1

′ + 𝑓3
′𝑓0

′ = 2𝑓0
′𝑓3

′ + 2𝑓1
′𝑓2

′  

2.2 APPLICATION TO THE FLOW PROBLEM     

Consider moment equation in (1.09)                                         

𝑓′′′ − 𝑓′2
+ 𝑓𝑓′′ + 𝑃𝑟𝐺𝑟𝜃 − [𝑀2 + 𝑃𝑟𝐷𝑎]𝑓′ = 0                  

Take the Laplace transform of the moment equation, yield 

𝑠3𝐿[𝑓] − 𝑠2𝑓(0) − 𝑠𝑓′(0) − 𝑓′′(0) = 𝐿[𝑓′2
] − 𝐿[𝑓𝑓′′] − 𝑃𝑟𝐺𝑟𝐿[𝜃] − [𝑀2 + 𝑃𝑟𝐷𝑎]𝐿[𝑓′]     

 𝑓′2
= ∑ 𝐴𝑛

∞
𝑛      𝑓𝑓′′ =  ∑ 𝐵𝑛

∞
𝑛                  

𝐿[𝑓] =
1

𝑠
𝑓(0) +

1

𝑠2 𝑓′(0) +
1

𝑠3 𝑓′′(0) + (
1

𝑠3 [𝐿[𝐴𝑛] − 𝐿[𝐵𝑛] − 𝑃𝑟𝐺𝑟𝐿[𝜃] − [𝑀2 + 𝑃𝑟𝐷𝑎]𝐿[𝑓′]]) (2.08) 

𝐵0 =
𝛽2

2
𝜂2,     𝐴0  𝛽2𝜂2  
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Taking the inverse Laplace transform of                                                                               2.08a 

𝑓 =
1

𝑠3 𝑓′′(0) + 𝐿−1 (
1

𝑠3 [𝐿[𝐴𝑛] − 𝐿[𝐵𝑛] − 𝑃𝑟𝐺𝑟𝐿[𝜃] − [𝑀2 + 𝑃𝑟𝐷𝑎]𝐿[𝑓′]])              2.08b 

Let  𝑓′′(0) = 𝛽 such that its lies within interval of study 

𝑓0 =
𝛽𝜂2

2
,   

𝑓1 =
𝛽2

120
𝜂5 −

𝑃𝑟𝐺𝑟

24
𝜂4 −

[𝑀2+𝑃𝑟𝐷𝑎]𝛽

24
𝜂4  

Series approximation solution for momentum flow 

𝑓(𝜂) = ∑ 𝑓𝑛
∞
𝑛 = 𝑓0 + 𝑓1 =

𝛽𝜂2

2
+

𝛽2

120
𝜂5 −

𝑃𝑟𝐺𝑟

24
𝜂4 −

[𝑀2+𝑃𝑟𝐷𝑎]𝛽

24
𝜂4  

 Taken Laplace transform for energy equation                                                            

𝜃′′ =
1

[1−𝑁]
[𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝜆𝜃]       

 2.09 

 𝐿[𝜃] =
1

𝑠
𝜃(0) +

1

𝑠2 𝜃′(0) +
1

[1−𝑁]

1

𝑠2 𝐿[𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝜆𝜃]     2.10 

Let 𝜃(0) = 𝛼 such that its lies within boundary of study   

Take inverse Laplace transform of (2.10) 

𝜃(𝜂) = 𝛼𝜂 + 𝜂 +
1

[1−𝑁]
𝐿−1 (

1

𝑠2 𝐿[𝑃𝑟𝑓′𝜃 + 𝑃𝑟𝑓𝜃′ + 𝑃𝑟𝜆𝜃])  

𝜃0 = (𝛼 + 1)𝜂  

𝜃𝑛+1 =
1

[1−𝑁]
𝐿−1 (

1

𝑠2 𝐿[𝑃𝑟𝐶𝑛 + 𝑃𝑟𝐷𝑛 + 𝑃𝑟𝜆𝜃0])  

𝑓′𝜃 = 𝐶𝑛 = ∑ 𝑓𝑘
′𝜃𝑛−𝑘

𝑛
𝑘=0     𝑓𝜃′ = 𝐷𝑛 = ∑ 𝑓𝑘𝜃𝑛−𝑘

∞
𝑘=0   

𝜃1 =
1

[1−𝑁]
𝐿−1 (

1

𝑠2 𝐿[𝑃𝑟𝐶0 + 𝑃𝑟𝐷0 + 𝑃𝑟𝜆𝜃0])  

𝐶0 = 𝛽[𝛼 + 1]𝜂2  

𝐷0 = 𝛽[𝛼 + 1]
𝜂2

2
  

Substituting𝐶0 𝑎𝑛𝑑 𝐷0 into 𝜃1, yield 

𝜃1 =
𝑃𝑟[𝛼+1]

[1−𝑁]
𝐿−1 (

1

𝑠2 𝐿 [𝛽𝜂2 + 𝛽
𝜂2

2
+ 𝜆𝜂])  

𝜃1 =
𝑃𝑟[𝛼+1]

[1−𝑁]
[

𝛽

8
𝜂4 +

𝜆𝜂3

6
]   

Choosing 𝛼 = 0.02, 𝛽 = 0.31, 𝜆 = 0.10            

Series approximation solution for energy flow 

 𝜃(𝜂) = ∑ 𝜃𝑛
∞
𝑛 = 𝜃0 + 𝜃1 = (𝛼 + 1)𝜂 +

𝑃𝑟[𝛼+1]

[1−𝑁]
[

𝛽

8
𝜂4 +

𝜆𝜂3

6
]     2.11  

 

RESULTS AND DISCUSSION 

Laplace Decomposition method was use to analyzed a radiative sodium bi carbonate fluid, 

the fluid was investigated at the fixed values of 𝑝𝑟 = 0.71, 𝛼 = 0.02, 𝛽 = 0.31 and 𝜆 = 0.10, 

at different values of 𝐺𝑟 = 5, 6, 7. 𝐷𝑎 = 𝑀 = 1,2,3, N = 5,6,7. Velocity Profile of the fluid is 

represented by figure 1. It indicated that a decrease in the Grashof number 𝐺𝑟 led to an 

increase in the fluid velocity. In figure 2, a decrease in the Darcy number 𝐷𝑎 was found to 

results in  increase in the fluid flow, in agreement with Haque. Figure 3, indicated a 

decrease in the flow velocity as result of increase in the Magnetic number, which also 

agreed with Haque. In Figure 4, there is an increase in the radiative parameter N in the 

presence of Sodium Bicarbonate, which increased the temperature of the fluid flow, in 

agreement with Gireesha and Rudraswany(2014) 
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𝑓(𝜂)          

 
Fig 1. Velocity profile at 𝑃𝑟 = 0.71, 𝑀 = 𝐷𝑎 = 1    

  

𝑓(𝜂)  

   
𝜂                        

Fig 2 velocity profile at 𝑃𝑟 = 0.71, 𝑀 = 1, 𝐺𝑟 = 5   
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𝜂      

Fig 3 velocity profile at 𝑃𝑟 = 0.71, 𝐷𝑎 = 1, 𝐺𝑟 = 5        

 

 

𝜃(𝜂)  

  
𝜂              

Fig 4 Temperature profile at 𝑃𝑟 = 0.71     
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